首页> 外文期刊>Journal of Real-Time Image Processing >Fast intra-coding unit partition decision in H.266/FVC based on deep learning
【24h】

Fast intra-coding unit partition decision in H.266/FVC based on deep learning

机译:基于深度学习的H.266 / FVC中快速编码单元分区决策

获取原文
获取原文并翻译 | 示例

摘要

In the recent Future Video Coding (FVC) standard developed by the Joint Video Exploration Team (JVET), the quad-tree binary-tree (QTBT) block partition module makes use of rectangular block forms and additional square block sizes compared to quad-tree (QT) block partitioning module proposed in the predecessor High-Efficiency Video Coding (HEVC) standard. This block flexibility, induced with the QTBT module, significantly improves compression performance while it dramatically increases coding complexity due to the brute force search for Rate Distortion Optimization (RDO). To cope with this issue, it is necessary to consider the unique characteristics of QTBT in FVC. In this paper, we propose a fast QT partitioning algorithm based on a deep convolutional neural network (CNN) model to predict coding unit (CU) partition instead of RDO which enhances considerably QTBT performance for intra-mode coding. Based on a suitable diversified CU partition patterns database, the optimization process is set up with three levels CNN structure developed to learn the split or non-split decision from the established database. Experimental results reveal that the proposed algorithm can accelerate the QTBT block partition structure by reducing the intra-mode encoding time by an average of 35% with a bit rate increase of 1.7%, allowing its application in practical scenarios.
机译:在最近未来的视频编码(FVC)标准由联合视​​频探索团队(JVET)开发,四边形二进制树(QTBT)块分区模块利用矩形块形式和与四边形相比的额外方块尺寸(Qt)块分区模块,提出了前任高效视频编码(HEVC)标准。使用QTBT模块引起的这种块灵活性,显着提高了压缩性能,而由于对速率失真优化(RDO)的蛮力搜索,它显着提高了编码复杂性。要应对这个问题,有必要考虑FVC中QTBT的独特特征。在本文中,我们提出了一种基于深度卷积神经网络(CNN)模型的快速QT分区算法,以预测编码单元(CU)分区而不是RDO,这提高了用于内部模式编码的显着QTBT性能。基于合适的多样化Cu分区模式数据库,使用三级CNN结构建立了优化过程,从开发的CNN结构中学于从已建立的数据库中学习分割或非分裂决定。实验结果表明,所提出的算法可以通过将模型内编码时间减少35%,比特率增加1.7%,允许其在实际情况下的应用程序中加速QTBT块分区结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号