首页> 外文期刊>Journal of Real-Time Image Processing >Effective and efficient multitask learning for brain tumor segmentation
【24h】

Effective and efficient multitask learning for brain tumor segmentation

机译:脑肿瘤细分的有效和高效的多任务学习

获取原文
获取原文并翻译 | 示例

摘要

Recently, brain tumor segmentation has achieved great success, partially because of deep learning-based relation exploration and multiscale analysis. However, the computational complexity hinders the real-time application. In this paper, we propose a revised multitask learning approach in which a lightweight network with only two scales is adopted to segment different kinds of tumor regions. Moreover, we design a hybrid hard sampling method that considers both sample sparsity and effectiveness. Extensive experiments on the BraTS19 segmentation challenge dataset have shown that our proposed method improves the Dice coefficient by a margin of 0.4-1.0 for different kinds of brain tumor regions and obtains results that are competitive with state-of-the-art brain tumor segmentation approaches.
机译:最近,脑肿瘤细分取得了巨大成功,部分原因是基于深入的学习关系探索和多尺度分析。但是,计算复杂性阻碍了实时应用程序。在本文中,我们提出了一种修改后的多任务学习方法,其中采用仅具有两种尺度的轻量级网络来分割不同种类的肿瘤区域。此外,我们设计了一种混合硬采样方法,其考虑样品稀疏性和有效性。关于Brats19分割挑战数据集的广泛实验表明,我们所提出的方法将骰子系数改善为0.4-1.0的不同类型的脑肿瘤区域,获得与最先进的脑肿瘤分割方法具有竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号