首页> 外文期刊>Journal of Real-Time Image Processing >Supervised deep semantics-preserving hashing for real-time pulmonary nodule image retrieval
【24h】

Supervised deep semantics-preserving hashing for real-time pulmonary nodule image retrieval

机译:用于实时肺结核图像检索的监督深度语义保存散列

获取原文
获取原文并翻译 | 示例

摘要

Hashing-based medical image retrieval has drawn extensive attention recently, which aims at providing effective aided diagnosis for medical personnel. In the paper, a novel deep hashing framework is proposed in the medical image retrieval, where the processes of deep feature extraction, binary code learning, and deep hash function learning are jointly carried out in supervised fashion. Particularly, the discrete constrained objective function in the hash code learning is optimized iteratively, where the binary code can be directly solved with no need for relaxation. In the meantime, the semantic similarity is maintained by fully exploring supervision information during the discrete optimization, where the neighborhood structure of training data is preserved by applying a graph regularization term. Additionally, to gain the fine-grained ranking of the returned medical images sharing the same Hamming distance, a novel image re-ranking scheme is proposed to refine the similarity measurement by jointly considering Euclidean distance between the real-valued feature descriptors and their category information between those images. Extensive experiments on the pulmonary nodule image dataset demonstrate that the proposed method can achieve better retrieval performance over the state of the arts.
机译:基于哈希的医学图像检索最近绘制了广泛的关注,旨在为医务人员提供有效的辅助诊断。本文在医学图像检索中提出了一种新的深度散列框架,其中深度特征提取,二元码学习和深哈希函数学习的过程中共同实施。特别地,迭代地优化散列码学习中的离散受限的目标函数,其中可以直接解决二进制代码,而无需放松。同时,通过在离散优化期间完全探索监督信息,通过应用图形正规化术语来保持语义相似性。另外,为了获得共享相同的汉明距离的返回医学图像的细粒度排名,提出了一种新颖的图像重新排名方案来通过联合考虑实际值特征描述符及其类别信息之间的欧几里德距离来细化相似度测量这些图像之间。在肺结核图像数据集上的广泛实验表明,该方法可以在最新的状态下实现更好的检索性能。

著录项

  • 来源
    《Journal of Real-Time Image Processing》 |2020年第6期|1857-1868|共12页
  • 作者单位

    Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin Peoples R China|Hebei Univ Technol Lab Electromagnet Field & Elect Apparat Reliabil Tianjin Peoples R China|Informat Technol Ctr North China Inst Aerosp Engn Langfang Peoples R China;

    Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin Peoples R China|Hebei Univ Technol Lab Electromagnet Field & Elect Apparat Reliabil Tianjin Peoples R China|Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China|Hebei Univ Technol Hebei Prov Key Lab Big Data Calculat Tianjin Peoples R China;

    Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China|Hebei Univ Technol Hebei Prov Key Lab Big Data Calculat Tianjin Peoples R China;

    Univ Lancaster Sch Comp & Commun Lancaster England;

    Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Semantics-preserving hashing; Pulmonary nodule; Real-time image retrieval;

    机译:深入学习;语义保存散列;肺结核;实时图像检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号