首页> 外文期刊>Journal of Real-Time Image Processing >DSP-based image real-time dehazing optimization for improved dark-channel prior algorithm
【24h】

DSP-based image real-time dehazing optimization for improved dark-channel prior algorithm

机译:基于DSP的图像实时脱水优化,用于改进的暗信道现有算法

获取原文
获取原文并翻译 | 示例

摘要

To solve the problem of non-real-time processing of image dehazing using traditional dark-channel prior algorithm, this work studies image real-time penetrating fog optimization technologies based on digital signal processor (DSP) devices. Using jointed optimization mechanism between algorithm and device, we can achieve real-time processing. During algorithm optimization, mean filter characterized low computation substitutes the guided filter which is the most complex in dark-channel algorithm for dehazing. In optimization of image processing task under the embedded device, we empirically construct two-step optimization strategy for raising speed of processing. Thereupon, the awful division calculation for DSP device is achieved approximately by multiplication after the reciprocal operation. We utilize the specified template which is considerably designed to realize mean filter. Thus, the division factor in the template can be calculated innovatively via shift instructions featured on DSP. The experimental results show that the optimization solution provided has realized real-time image dehazing processing for standard-definition and high-definition at frame rate of 25 fps over C6748 pure DSP device featured 456 MHz clock, at the same time the effect of penetrating fog is not remarkably degraded. The optimization methods or ideas can easily be transplanted to similar platform.
机译:为了解决使用传统的暗信道现有算法的图像脱水的非实时处理的问题,这项工作研究了基于数字信号处理器(DSP)设备的实时穿透雾优化技术。在算法和设备之间使用关节优化机制,我们可以实现实时处理。在算法优化期间,平均滤波器表征低计算替换了导向滤波器,这是暗信道算法中最复杂的脱水。在嵌入式设备下的图像处理任务的优化中,我们经验构建了两步优化策略,以提高加工速度。于是,在互酷操作之后大约通过乘法实现DSP设备的可怕分割计算。我们利用了指定的模板,该模板很多旨在实现平均过滤器。因此,模板中的分割因子可以通过DSP上的换档指令进行创新地计算。实验结果表明,提供的优化解决方案在C6748纯DSP设备上实现了25 FPS的标准定义和高清的实时图像脱水处理,其特点是456 MHz时钟,同时渗透雾的效果没有显着降级。优化方法或想法很容易移植到类似的平台上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号