首页> 外文期刊>Journal of Real-Time Image Processing >Real-time implementation of moving object detection in UAV videos using GPUs
【24h】

Real-time implementation of moving object detection in UAV videos using GPUs

机译:使用GPU的UAV视频中移动对象检测的实时实现

获取原文
获取原文并翻译 | 示例

摘要

Unmanned aerial vehicles (UAVs) are being increasingly used for video surveillance and remote sensing. Moving object detection is an important algorithm for many such applications. Real-time processing of moving object detection is required for various decision-making tasks in many of these applications. However, being compute-intensive in nature, it is difficult to process high-resolution UAV-sourced videos in real-time. GPU vendors regularly release newer architectures with new features to speed up various kinds of applications. Hence, it becomes imperative to explore parallel implementations of such algorithms using the new GPU architectures. This paper describes parallel implementation strategies for algorithms like feature detection, feature matching, image transformation, frame differencing, morphological processing and connected component labeling which are used to detect moving objects in UAV-sourced videos. The implementation is tested on different NVIDIA GPU microarchitectures (Fermi, Maxwell, and Pascal). Experimental results show the achieved frame processing rates of 43.1 fps, 35.5 fps and 9.1 fps for 1080p videos on Pascal, Maxwell, and Fermi microarchitectures respectively.
机译:无人驾驶飞行器(无人机)越来越多地用于视频监控和遥感。移动对象检测是许多这样的应用的重要算法。这些应用中的各种决策任务需要实时处理移动对象检测。然而,在性质上进行计算密集,很难实时处理高分辨率无人机源视频。 GPU供应商定期发布具有新功能的较新的架构,以加快各种应用程序。因此,必须使用新的GPU架构探讨这种算法的并行实现。本文介绍了特征检测等算法的平行实现策略,具有用于检测无人机源视频中的移动对象的特征匹配,图像变换,帧差异,形态处理和连接的部件标记。在不同的NVIDIA GPU微体系结构(Fermi,Maxwell和Pascal)上测试了该实施。实验结果表明,在Pascal,Maxwell和Fermi微体系结构上,实现了43.1fps,35.5 fps和9.1fps的43.1fps,35.5 fps和9.1 fps的帧处理速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号