首页> 外文期刊>Journal of Real-Time Image Processing >Application of deep learning model based on image definition in real-time digital image fusion
【24h】

Application of deep learning model based on image definition in real-time digital image fusion

机译:深度学习模型在实时数字图像融合中的图像定义中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on pulse coupled neural network (PCNN) and digital image fusion. Aiming at the existing problems, this paper proposes a real-time deep learning model with dual-channel PCNN fusion algorithm based on image definition. It will also be helpful to digital image forensics. With the integration of the orthogonal color space that conforms to HVS, this algorithm simplifies the traditional PCNN model to a parallel dual-channel adaptive PCNN structure. Also, it can realize the adaptive processing by defining the image definition to be beta, the coupled linking coefficient. As the dynamic threshold can be increased exponentially with this method, it can effectively solve the problems. The experimental result proves that our algorithm outperforms the traditional fusion algorithms according to the subjective visual effect or the objective assessment standard.
机译:本文侧重于脉冲耦合神经网络(PCNN)和数字图像融合。针对存在的问题,本文提出了一种基于图像定义的双通道PCNN融合算法的实时深度学习模型。它对数字图像取证也有所帮助。随着符合HVS的正交颜色空间的集成,该算法简化了传统的PCNN模型到平行双通道自适应PCNN结构。此外,它可以通过定义耦合的链接系数来实现通过定义图像定义来实现自适应处理。随着动态阈值可以用这种方法呈指数增加,它可以有效解决这些问题。实验结果证明,我们的算法根据主观视觉效果或客观评估标准优越传统融合算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号