首页> 外文期刊>Journal of Real-Time Image Processing >Accelerated hyperspectral image recursive hierarchical segmentation using GPUs, multicore CPUs, and hybrid CPU/GPU cluster
【24h】

Accelerated hyperspectral image recursive hierarchical segmentation using GPUs, multicore CPUs, and hybrid CPU/GPU cluster

机译:使用GPU,多核CPU和混合CPU / GPU集群的加速高光谱图像递归分层分段

获取原文
获取原文并翻译 | 示例

摘要

Rescue missions, military target detection, hazard prevention, and other time-critical remote-sensing applications require real-time or autonomous decision making and onboard processing capabilities. Thus, lightweight, small size, and low-power-consumption hardware is essential for onboard real-time processing systems. With the increasing need for dimensionality, size, and resolution of hyperspectral sensors, additional challenges are posed upon remote-sensing processing systems, and more capable computing architectures are needed. Graphical processing units (GPUs) emerged as promising architecture for light-weight high-performance computing. In this paper, we propose accelerated parallel solutions for the well-known recursive hierarchical segmentation (RHSEG) analysis algorithm, using a GPU, hybrid multicore CPU with GPU and hybrid multicore CPU/GPU clusters. RHSEG is a method developed by the National Aeronautics and Space Administration, which is designed to provide more useful classification information with related objects and regions across the hierarchy of output levels. The proposed solutions are built using the NVidia's compute unified device architecture and Microsoft's C++ Accelerated Massive Parallelism (C++ AMP) and are tested using NVidia GeForce hardware and Amazon Elastic Compute Cluster (EC2). The achieved speedups by parallel solutions compared with CPU sequential implementations are 21x for parallel single GPU and 240x for hybrid multinode computer clusters with 16 computing nodes. The energy consumption is reduced to 74 % when using a single GPU, compared to that for the equivalent parallel CPU cluster.
机译:救援任务,军事目标检测,危险预防和其他对时间要求苛刻的遥感应用需要实时或自主的决策和机载处理能力。因此,轻巧,小巧和低功耗的硬件对于机载实时处理系统至关重要。随着对高光谱传感器的尺寸,大小和分辨率的日益增长的需求,遥感处理系统面临着更多的挑战,并且需要更加强大的计算架构。图形处理单元(GPU)成为轻量级高性能计算的有前途的体系结构。在本文中,我们使用GPU,带有GPU的混合多核CPU和混合多核CPU / GPU群集,为著名的递归层次分段(RHSEG)分析算法提出了加速并行解决方案。 RHSEG是美国国家航空航天局开发的一种方法,旨在为输出级别中的相关对象和区域提供更有用的分类信息。拟议的解决方案使用NVidia的计算统一设备架构和Microsoft的C ++加速大规模并行(C ++ AMP)构建,并使用NVidia GeForce硬件和Amazon Elastic Compute Cluster(EC2)进行了测试。与CPU顺序实现相比,并行解决方案实现的加速比是并行单GPU的21倍,而具有16个计算节点的混合多节点计算机集群的240倍。与等效的并行CPU群集相比,使用单个GPU时的能耗降低到74%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号