首页> 外文期刊>Journal of Real-Time Image Processing >Real-time identification of pedestrian meeting and split events from surveillance videos using motion similarity and its applications
【24h】

Real-time identification of pedestrian meeting and split events from surveillance videos using motion similarity and its applications

机译:使用运动相似性实时识别监视视频中的行人会议和拆分事件及其应用

获取原文
获取原文并翻译 | 示例

摘要

A real-time system to automatically identify pedestrian meeting events from surveillance videos is proposed. The system consists of three components: a pedestrian detection and tracking module, a pedestrian group identification module and a pedestrian group record. A three-level blob filter is used to improve the accuracy of pedestrian detection in the pedestrian detection and tracking module. Our previous work, the non-recursive motion similarity clustering algorithm is used as the pedestrian group identification module. Groups are detected within a time period of 0.02ms (for four pedestrians in the scene) to 0.05ms (for 32 pedestrians in the scene) of their occurrences in the video, using an Intel I7 processor-based machine. The pedestrian groups identified by this algorithm are stored in pedestrian group records, which are used subsequently to identify pedestrian meeting events. Visualizations were created to highlight the pedestrian groups, their history of group membership and the spatial distribution. With these visualizations, the enforcement agencies no longer need to browse through entire video archives for investigation purposes. We implemented the system to monitor several locations simultaneously in residential halls at the National University of Singapore. Our system was able to handle successfully 18 digital 640x480 pixel video streams at 25fps on a moderately loaded Ethernet, monitoring a maximum of 30 pedestrians and detecting 83% of the meeting and split events.
机译:提出了一种实时系统,用于从监视视频中自动识别行人会议事件。该系统由三部分组成:行人检测和跟踪模块,行人组识别模块和行人组记录。在行人检测和跟踪模块中,使用三级Blob滤波器来提高行人检测的准确性。我们以前的工作是将非递归运动相似性聚类算法用作行人组识别模块。使用基于Intel I7处理器的机器,可以在0.02ms(对于场景中的四个行人)到0.05ms(对于场景中的32个行人)的时间段内检测到组,它们在视频中的出现时间为0.05ms。通过此算法标识的行人组存储在行人组记录中,这些记录随后用于标识行人会议事件。创建可视化效果以突出显示行人组,行人成员历史和空间分布。通过这些可视化,执法机构不再需要浏览整个视频档案来进行调查。我们实施了该系统,以同时监控新加坡国立大学住宅大厅中的多个位置。我们的系统能够在中等负载的以太网上以25fps的速度成功处理18个数字640x480像素的视频流,最多监视30个行人,并检测83%的会议和拆分事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号