首页> 外文期刊>Journal of Real-Time Image Processing >Real time security framework for detecting abnormal events at ATM installations
【24h】

Real time security framework for detecting abnormal events at ATM installations

机译:用于在ATM安装中检测异常事件的实时安全框架

获取原文
获取原文并翻译 | 示例

摘要

Automated Teller Machines (ATM) transactions are quick and convenient, but the machines and the areas surrounding them make people and ATM vulnerable to felonious activities if not properly put under the protection. Responsibility for providing security needs to be fixed, however, most machines have very less or no security. It is imminent to develop security framework that would identify event as their happening. In this paper we propose a robust computer vision approach for identifying abnormal activity at ATM premises in real time. For effective identification of activity, we propose a novel method in which different Window size is used to record magnitude of pixel intensity using root of sum of square method. To describe this pattern, histogram of gradients is used. Further random forest is applied to infer the most likely class. The average accuracy of our security system is 93.1 %. For validation of our approach we have tested it on two standard datasets, HMDB and Caviar. Our approach achieved 52.12 % accuracy on HMDB dataset and 81.48 % on Caviar dataset.
机译:自动柜员机(ATM)交易快速便捷,但如果不加以适当保护,则自动柜员机及其周围区域会使人员和ATM容易遭受重罪活动。需要固定提供安全性的责任,但是,大多数计算机的安全性很少或没有。迫切需要开发一种将事件识别为正在发生的安全框架。在本文中,我们提出了一种强大的计算机视觉方法,用于实时识别ATM场所中的异常活动。为了有效地识别活动,我们提出了一种新颖的方法,其中使用不同的窗口大小,使用平方和法的根来记录像素强度的大小。为了描述这种模式,使用了梯度直方图。进一步使用随机森林来推断最可能的类别。我们的安全系统的平均准确性为93.1%。为了验证我们的方法,我们已经在两个标准数据集HMDB和Caviar上对其进行了测试。我们的方法在HMDB数据集上达到52.12%的准确度,在Caviar数据集上达到81.48%的准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号