首页> 外文期刊>Journal of Real-Time Image Processing >Approximate computing for onboard anomaly detection from hyperspectral images
【24h】

Approximate computing for onboard anomaly detection from hyperspectral images

机译:用于从高光谱图像进行机载异常检测的近似计算

获取原文
获取原文并翻译 | 示例

摘要

Interest on anomaly detection for hyperspectral images has increasingly grown during the last decades due to the diversity of applications that benefit from this technique. However, the high computational cost inherent to this detection procedure seriously limits its processing efficiency, especially for onboard application scenarios. In this paper, a novel spectral and spatial approximate computing approach, named SSAC is proposed for onboard anomaly detection from hyperspectral images. To efficiently design the proposed approach, two preliminary aspects have been deeply analyzed in this work. First, data correlation in hyperspectral images in both spectral and spatial dimensions has been analyzed. The high data correlation in both spectral and spatial dimensions is considered to be one of the cornerstones of the SSAC approach. Second, the error resilience of a popular hyperspectral anomaly detection algorithm in both data level and algorithm level has been analyzed, which is considered to be another cornerstone of the SSAC approach. Based on the outcomes of this analysis, the processing of spectrally and spatially degraded images has been employed for reducing computation complexity in onboard hyperspectral anomaly detection scenarios in this work. Performance assessment tools such as ROC curves, Cost curves, and computing times have been used for evaluating the computing accuracy and efficiency of our proposal. The results obtained with a nonlinear anomaly detector for hyperspectral imagery, such as the well-known kernel RX-algorithm, show that the proposed SSAC approach greatly improves anomaly detection efficiency compared to the traditional method with negligible degeneration in accuracy. This is an important achievement to meet the restrictions of onboard hyperspectral anomaly detection scenarios.
机译:在过去的几十年中,由于受益于这种技术的应用的多样性,对高光谱图像异常检测的兴趣日益增长。但是,这种检测过程固有的高计算成本严重限制了其处理效率,尤其是对于机载应用场景。在本文中,提出了一种新的光谱和空间近似计算方法,称为SSAC,用于从高光谱图像进行机载异常检测。为了有效地设计所提出的方法,在这项工作中已经对两个初步方面进行了深入分析。首先,已经分析了光谱和空间维度上的高光谱图像中的数据相关性。在频谱和空间维度上的高数据相关性被认为是SSAC方法的基石之一。其次,分析了流行的高光谱异常检测算法在数据级别和算法级别的容错性,这被认为是SSAC方法的另一个基础。基于此分析的结果,在这项工作中,已采用光谱和空间退化图像的处理来降低机载高光谱异常检测场景中的计算复杂性。诸如ROC曲线,成本曲线和计算时间之类的性能评估工具已用于评估我们提案的计算准确性和效率。使用非线性高光谱图像异常检测器(例如著名的核RX算法)获得的结果表明,与传统方法相比,所提出的SSAC方法大大降低了异常检测效率,而传统方法的准确性可忽略不计。这是满足机载高光谱异常检测场景的限制的一项重要成就。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号