首页> 外文期刊>Journal of Real-Time Image Processing >Embedded GPU implementation of sensor correction for on-board real-time stream computing of high-resolution optical satellite imagery
【24h】

Embedded GPU implementation of sensor correction for on-board real-time stream computing of high-resolution optical satellite imagery

机译:传感器校正的嵌入式GPU实现,用于高分辨率光学卫星图像的机载实时流计算

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the data generation rate of high-resolution optical satellites is increasing rapidly, and this situation brings massive stress to the data downloading link and data processing system. To relieve downloading link stress and enhance the time efficiency of information acquisition, on-board processing needs to be introduced. Current on-board solutions are mostly based on digital signal processing and field-programmable gate array, which are obturated, lack flexibility, and are highly costly to implement. This paper takes sensor correction, the prerequisite geometric step of high-resolution optical satellite data processing, as an example, using a simulation prototype made of a double-module data parallel pipeline system based on NVIDIA embedded graphics processing unit platform, and proposes a feasible stream computing approach for low power consumption, flexible, and expandable on-board real-time processing. The experiments use a short strip of GaoFen-9 satellite data that contain 4.5 standard scenes to validate the performance and correctness of this approach. Compared to the same algorithms on the Dell PowerEdge T630 Server, the on-board version demonstrates an obvious performance advantage. When considering the contrast of power consumption for each platform, the advantage becomes even more significant. With statistics and analysis of experimental results, the timeline of processing demonstrates that this approach could meet the on-board real-time sensor correction requirement. And correctness is also verified by the root-mean-square error of pixel-by-pixel image comparison experiments.
机译:近年来,高分辨率光学卫星的数据生成率迅速提高,这种情况给数据下载链路和数据处理系统带来了巨大压力。为了减轻下载链接的压力并提高信息获取的时间效率,需要引入车载处理。当前的机载解决方案主要基于数字信号处理和现场可编程门阵列,它们受阻,缺乏灵活性并且实施成本高昂。本文以基于NVIDIA嵌入式图形处理单元平台的双模块数据并行管线系统的仿真原型为例,以传感器校正作为高分辨率光学卫星数据处理的必要几何步骤为例,提出了一种可行的方法。流计算方法,以实现低功耗,灵活和可扩展的板载实时处理。实验使用包含4.5个标准场景的一小段高分9号卫星数据来验证这种方法的性能和正确性。与Dell PowerEdge T630服务器上的相同算法相比,机载版本具有明显的性能优势。当考虑每个平台的功耗对比时,优势变得更加明显。通过对实验结果进行统计和分析,处理的时间轴表明该方法可以满足机载实时传感器校正要求。正确性还通过逐像素图像比较实验的均方根误差进行了验证。

著录项

  • 来源
    《Journal of Real-Time Image Processing》 |2018年第3期|565-581|共17页
  • 作者单位

    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,Collaborative Innovation Center of Geospatial Technology;

    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University;

    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,School of Resource and Environmental Sciences, Wuhan University;

    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University;

    Institute of Remote Sensing Information of Beijing;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sensor correction; Embedded GPU; On-board; Real-time; Stream computing;

    机译:传感器校正;嵌入式GPU;板载;实时;流计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号