首页> 外文期刊>Journal of pseudo-differential operators and applications >Lower bounds of Dirichlet eigenvalues for a class of higher order degenerate elliptic operators
【24h】

Lower bounds of Dirichlet eigenvalues for a class of higher order degenerate elliptic operators

机译:一类高阶简并椭圆算子的Dirichlet特征值的下界

获取原文
获取原文并翻译 | 示例

摘要

Let Omega be a bounded open domain in R-n with smooth boundary partial derivative Omega, X = (X-1, X-2, ... , X-m) be a system of real smooth vector fields defined on Omega and the boundary partial derivative Omega is non-characteristic for X. Denote lambda(k) as the k-th Dirichlet eigenvalue for degenerate elliptic operator L on Omega with L = (Sigma(m)(j=1) X-j(2p))(2), p = 1, then in this paper, we give a lower bound estimate of lambda(k) for the operator L by using weighted Sobolev embedding theorem and maximally hypoelliptic estimate.
机译:令Omega为Rn中具有光滑边界偏导数Omega的有界开放域,X =(X-1,X-2,...,Xm)是在Omega和边界偏导数Omega上定义的实光滑向量场的系统是X的非特征。将lambda(k)表示为Omega上退化椭圆算子L的第k个Dirichlet特征值,其中L =(Sigma(m)(j = 1)Xj(2p))(2),p> = 1,那么在本文中,我们通过使用加权Sobolev嵌入定理和最大次椭圆估计来给出算子L的lambda(k)下界估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号