首页> 外文期刊>Journal of power sources >LiFe_xMn_(1-x)PO_4: A cathode for lithium-ion batteries
【24h】

LiFe_xMn_(1-x)PO_4: A cathode for lithium-ion batteries

机译:LiFe_xMn_(1-x)PO_4:锂离子电池的阴极

获取原文
获取原文并翻译 | 示例
       

摘要

The high redox potential of LiMnPO_4, ~4.0 vs. (Li~+/Li), and its high theoretical capacity of 170mAhg~(-1) makes it a promising candidate to replace LiCoO_2 as the cathode in Li-ion batteries. However, it has attracted little attention because of its severe kinetic problems during cycling. Introducing iron into crystalline LiMnPO_4 generates a solid solution of LiFe_xMni_(1-x)PO_4 and increases kinetics; hence, there is much interest in determining the Fe-to-Mn ratio that will optimize electrochemical performance. To this end, we synthesized a series of nanoporous LiFe_xMni_(1-x)PO_4 compounds (with x = 0, 0.05, 0.1, 0.15, and 0.2), using an inexpensive solid-state reaction. The electrodes were characterized using X-ray diffraction and energy-dispersive spectroscopy to examine their crystal structure and elemental distribution. Scanning-, tunneling-, and transmission-electron microscopy (viz., SEM, STEM, and TEM) were employed to characterize the micromorphology of these materials; the carbon content was analyzed by thermogravimetric analyses (TGAs). We demonstrate that the electrochemical performance of LiFe_xMni_(1-x)PO_4 rises continuously with increasing iron content. In situ synchrotron studies during cycling revealed a reversible structural change when lithium is inserted and extracted from the crystal structure. Further, introducing 20% iron (e.g., LiFe_(0.2)Mn_(0.8)PO_4) resulted in a promising capacity (138mAhg~(-1) at C/10), comparable to that previously reported for nano-LiMnPO_4.
机译:LiMnPO_4的高氧化还原电势约为(Li〜+ / Li)4.0,而理论容量为170mAhg〜(-1),因此有望取代LiCoO_2作为锂离子电池的阴极。然而,由于它在循环过程中存在严重的动力学问题,因此很少引起注意。将铁引入结晶的LiMnPO_4中会生成LiFe_xMni_(1-x)PO_4的固溶体,并增加动力学。因此,人们对确定可优化电化学性能的Fe / Mn比非常感兴趣。为此,我们使用廉价的固态反应合成了一系列纳米多孔LiFe_xMni_(1-x)PO_4化合物(x = 0、0.05、0.1、0.15和0.2)。使用X射线衍射和能量色散光谱对电极进行表征,以检查其晶体结构和元素分布。使用扫描电子显微镜,隧道电子显微镜和透射电子显微镜(即SEM,STEM和TEM)表征这些材料的微观形态。碳含量通过热重分析(TGA)进行分析。我们证明,随着铁含量的增加,LiFe_xMni_(1-x)PO_4的电化学性能不断提高。循环过程中的原位同步加速器研究表明,当插入锂并从晶体结构中提取锂时,可逆结构发生变化。此外,引入20%的铁(例如,LiFe_(0.2)Mn_(0.8)PO_4)导致有希望的容量(在C / 10下为138mAhg〜(-1)),与先前报道的纳米LiMnPO_4相当。

著录项

  • 来源
    《Journal of power sources》 |2011年第7期|p.3659-3663|共5页
  • 作者单位

    Department of Sustainable Energy Technologies, Brookhaven National Laboratory, Upton, NY 11973, USA;

    Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA;

    Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton. NY 11973, USA;

    Department of Sustainable Energy Technologies, Brookhaven National Laboratory, Upton, NY 11973, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cathode; lithium manganese phosphate; iron substitution; nanoporous; carbon coating;

    机译:阴极;磷酸锰锂;铁替代纳米孔碳涂层;
  • 入库时间 2022-08-18 00:24:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号