首页> 外文期刊>Journal of power sources >Rose rock-shaped nano Cu2O anchored graphene for high-performance supercapacitors via solvothermal route
【24h】

Rose rock-shaped nano Cu2O anchored graphene for high-performance supercapacitors via solvothermal route

机译:玫瑰岩形纳米Cu2O锚固石墨烯,通过溶剂热途径用于高性能超级电容器

获取原文
获取原文并翻译 | 示例
       

摘要

Novel rose rock-shaped cuprous oxide anchored graphene nanocomposite (Cu2O-GN) is successfully synthesized by a simple and efficient one-step solvothermal method. Notably, the reduction of graphene oxide (GO) and deposition of nano-Cu2O on GN occur simultaneously during the polyol reaction process. The nanocomposite is systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). We also explore the formation mechanism of Cu2O-GN including the concentration effect of the precursor, precipitation agent, GO, and heating rate on the morphology of the resulting nanocomposite. It is noteworthy that Cu2O is gradually decorated on the large sheets of GN to form ordered three-dimensional nanostructure with the optimized concentration of GO, which is crucial to the growth of the final nanoarchitectures. In addition, the electrochemical properties of the Cu2O-GN nanocomposite are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The composite shows a favorable electrochemical capacitance (416 F g(-1), at 1 A g(-1)), rate performance and cycling stability. Also, a high specific capacitance and good retention point to its promising applications as electrode materials in supercapacitors. (C) 2016 Elsevier B.V. All rights reserved.
机译:通过一种简单有效的一步溶剂热法成功合成了新型玫瑰岩形氧化亚铜锚定石墨烯纳米复合材料(Cu2O-GN)。值得注意的是,在多元醇反应过程中,同时发生氧化石墨烯(GO)的还原和纳米Cu2O在GN上的沉积。纳米复合材料的特征在于X射线衍射(XRD),透射电子显微镜(TEM),扫描电子显微镜(SEM)和X射线光电子能谱(XPS)。我们还探讨了Cu2O-GN的形成机理,包括前驱体的浓度,沉淀剂,GO和加热速率对所得纳米复合材料形态的影响。值得注意的是,Cu2O在GN的大片材上逐渐装饰,形成具有最佳GO浓度的有序三维纳米结构,这对最终纳米结构的生长至关重要。此外,通过循环伏安法和恒电流充放电测量研究了Cu2O-GN纳米复合材料的电化学性能。该复合材料显示出良好的电化学电容(在1 A g(-1)时为416 F g(-1)),速率性能和循环稳定性。同样,高比电容和良好的保留性表明了其作为超级电容器电极材料的应用前景。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Journal of power sources》 |2016年第30期|66-75|共10页
  • 作者单位

    Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Seoul 151742, South Korea;

    Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Seoul 151742, South Korea;

    Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Seoul 151742, South Korea;

    Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Seoul 151742, South Korea;

    Yangzhou Univ, Coll Chem & Chem Engn, Yangzhou 225002, Jiangsu, Peoples R China;

    Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Seoul 151742, South Korea|Adv Inst Convergence Technol, Suwon 443270, South Korea;

    Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Seoul 151742, South Korea|Adv Inst Convergence Technol, Suwon 443270, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cuprous oxide; Graphene; Solvothermal procedure; Supercapacitor;

    机译:氧化亚铜;石墨烯;溶剂热法;超级电容器;
  • 入库时间 2022-08-18 00:22:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号