首页> 外文期刊>Journal of Pipeline Systems Engineering and Practice >Detection and Isolation of Interior Defects Based on Image Processing and Neural Networks: HDPE Pipeline Case Study
【24h】

Detection and Isolation of Interior Defects Based on Image Processing and Neural Networks: HDPE Pipeline Case Study

机译:基于图像处理和神经网络的内部缺陷检测与隔离:HDPE管道案例研究

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the condition of polyethylene (PE) pipelines as a case study. This study introduces a novel method to detect and diagnose defects of high-density polyethylene (HDPE) pipes. The pipe defect detector technique (PDDT) is designed to capture and process the images from the inner surface of pipes. Consequently, PDDT is one of the nondestructive ways to investigate possible defects in pipes. The PDDT's outcome offers valuable information regarding the shape, orientation, and length of defects in the inner surface of the pipe. This information plays an important role in defining the lifetime of the pipe and fault prediction. In this paper, a database consisting of a total 350 images was used to train, test, and verify a neural network system. For this purpose, input image quality was enhanced by applying Gabor and entropy filters. Then, the trained neural network was used to classify the input images into five defect categories. These categories are defined in a way to describe the shape and the orientation of the defects. Afterward, a curve completion method (CMM) that effectively derives the defect dimensions such as diameter and length was introduced. Finally, the life prediction methods that can use PDDT's result to predict the time that actual fault may occur in the pipe are discussed. (C) 2018 American Society of Civil Engineers.
机译:本文以案例研究聚乙烯(PE)管道的状况。这项研究介绍了一种新的方法来检测和诊断高密度聚乙烯(HDPE)管道的缺陷。管道缺陷检测器技术(PDDT)旨在捕获和处理来自管道内表面的图像。因此,PDDT是研究管道中可能存在的缺陷的一种非破坏性方法。 PDDT的结果提供了有关管道内表面缺陷的形状,方向和长度的有价值的信息。该信息在定义管道寿命和故障预测中起着重要作用。在本文中,一个由总共350张图像组成的数据库用于训练,测试和验证神经网络系统。为此,通过应用Gabor和熵过滤器可以提高输入图像的质量。然后,使用训练有素的神经网络将输入图像分类为五个缺陷类别。以描述缺陷的形状和方向的方式定义这些类别。此后,引入了一种可有效得出缺陷尺寸(例如直径和长度)的曲线完成方法(CMM)。最后,讨论了可以使用PDDT结果预测管道中实际故障可能发生的时间的寿命预测方法。 (C)2018美国土木工程师学会。

著录项

  • 来源
    《Journal of Pipeline Systems Engineering and Practice》 |2018年第2期|05018001.1-05018001.14|共14页
  • 作者单位

    KN Toosi Univ Technol, Fault Identificat Lab, Fac Elect Engn, Mechatron Dept, Shariati Ave,POB 16315-1355, Tehran 163171419, Iran;

    KN Toosi Univ Technol, Fault Identificat Lab, Fac Elect Engn, Mechatron Dept, Shariati Ave,POB 16315-1355, Tehran 163171419, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号