...
首页> 外文期刊>Journal of Physical Oceanography >The Arctic and Subarctic Ocean Flux of Potential Vorticity and the Arctic Ocean Circulation
【24h】

The Arctic and Subarctic Ocean Flux of Potential Vorticity and the Arctic Ocean Circulation

机译:北极和亚北极洋流的潜在涡度和北冰洋环流

获取原文
获取原文并翻译 | 示例

摘要

According to observations, the Arctic Ocean circulation beneath a shallow thermocline can be schematized by cyclonic rim currents along shelves and over ridges. In each deep basin, the circulation is also believed to be cyclonic. This circulation pattern has been used as an important benchmark for validating Arctic Ocean models. However, modeling this grand circulation pattern with some of the most sophisticated ocean-ice models has been often difficult. The most puzzling and thus perhaps the most interesting finding from the Arctic Ocean Model Intercomparison Project (AOMIP), an international consortium that runs 14 Arctic Ocean models by using the identical forcing fields, is that its model results can be grouped into two nearly exact opposite patterns. While some models produce cyclonic circulation patterns similar to observations, others do the opposite. This study examines what could be possibly responsible for such strange inconsistency. It is found here that the flux of potential vorticity (PV) from the subarctic oceans strongly controls the circulation directions. For a semienclosed basin like the Arctic, the PV integral over the whole basin yields a balance between the net lateral PV inflow and the PV dissipation along the boundary. When an isopycnal layer receives a net positive PV through inflow/outflow, the circulation becomes cyclonic so that friction can generate a flux of negative PV to satisfy the integral balance. For simplicity, a barotropic ocean model is used in this paper but its application to the 3D models will be discussed. In the first set of experiments, the model with a realistic Arctic bathymetry is forced by observed inflows and outflows. In this case, there is a net positive PV inflow to the basin, due to the fact that inflow layer is thinner than that of outflow. The model produces a circulation field that is remarkably similar to the one from observations. In the second experiment, the model bathymetry at Fram Strait is modified so that the same inflows and outflows of water masses lead to a net negative PV flux into the Arctic. The circulation is reversed and becomes nearly the opposite of the first experiment. In the third experiment, the net PV flux is made to be zero by modifying again the sill depth at Fram Strait. The circulation becomes two gyres, a cyclonic one in the Eurasian Basin and an anticyclonic one in the Canada Basin. To elucidate the control of the PV integral, a second set of model experiments is conducted by using an idealized Arctic bathymetry so that the PV dynamics can be better explained without the complication of rough topography. The results from five additional experiments that used the idealized topography will be discussed. While the model used in this study is one layer, the same PV-integral constraint can be applied to any isopycnal layer in a three-dimensional model. Variables that affect the PV fluxes to this density layer at any inflow/outflow channel, such as layer thickness and water volume flux, can affect the circulation pattern. The relevance to 3D models is discussed in this paper.
机译:根据观察,可以通过沿架子和山脊上方的气旋边缘流来示意浅层热跃层下的北冰洋环流。在每个深盆中,循环也被认为是旋风。这种环流模式已被用作验证北冰洋模型的重要基准。然而,用一些最复杂的海冰模型来模拟这种大环流模式通常是困难的。一个由国际财团使用相同的强迫场运行14个北冰洋模型的国际财团-北冰洋模型比对项目(AOMIP),最令人困惑,因此也许是最有趣的发现是,其模型结果可以分为两个几乎完全相反的结果模式。虽然某些模型产生的气旋循环模式与观测相似,但其他模型则相反。这项研究探讨了可能导致这种奇怪的不一致的原因。在这里发现,来自北极亚大洋的潜在涡度(PV)通量强烈地控制着循环方向。对于像北极这样的半封闭盆地,整个盆地上的PV积分在净侧向PV流入量与沿边界的PV耗散量之间取得平衡。当等渗层通过流入/流出接收净正PV时,循环将变成旋风,因此摩擦会产生负PV的通量以满足整体平衡。为简单起见,本文使用正压海洋模型,但将讨论其在3D模型中的应用。在第一组实验中,具有实际北极测深法的模型是由观察到的流入和流出所强迫的。在这种情况下,由于流入层比流出层薄,因此有净正PV流入盆地。该模型产生的循环场与观测的循环场非常相似。在第二个实验中,对Fram海峡的模型测深法进行了修改,以使相同的水团流入和流出导致净负PV通量流入北极。循环反向,几乎与第一个实验相反。在第三个实验中,通过再次修改Fram海峡的门槛深度,使净PV通量为零。环流成为两个旋流,在欧亚盆地为旋流,在加拿大盆地为反旋流。为了阐明对PV积分的控制,使用理想化的北极测深法进行了第二组模型实验,以便可以更好地解释PV动力学,而不必使粗糙的地形复杂化。将讨论使用理想地形的另外五个实验的结果。尽管本研究中使用的模型是一层,但是可以将相同的PV积分约束应用于三维模型中的任何等深层。在任何流入/流出通道上影响到该密度层的PV通量的变量,例如层厚度和水体积通量,都可能影响循环模式。本文讨论了与3D模型的相关性。

著录项

  • 来源
    《Journal of Physical Oceanography 》 |2005年第12期| p.2387-2407| 共21页
  • 作者

    JIAYAN YANG;

  • 作者单位

    Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号