...
首页> 外文期刊>Journal of Physical Oceanography >Baroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis
【24h】

Baroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis

机译:斜斜额肌逮捕:不稳定额叶生成的续集

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In a large-scale deformation flow, lateral and vertical buoyancy gradients sharpen through baroclinic frontogenesis near the surface boundary. A "thermally direct" ageostrophic secondary circulation cell arises during frontogenesis to maintain geostrophic, hydrostatic (thermal wind) momentum balance for the alongfront flow. Unstable three-dimensional fluctuations can grow during frontogenesis by baroclinic instability of the alongfront shear flow that converts frontal potential energy to fluctuation energy. At finite amplitude, the fluctuations provide alongfront-averaged eddy momentum and buoyancy fluxes that arrest the frontal sharpening even while the deformation flow persists. The frontal ageostrophic secondary circulation reverses to become a "thermally indirect" cell in the center of the front. This allows an approximate opposition between ageostrophic advection and eddy-flux divergence in the frontal buoyancy gradient variance (i.e., frontal strength) balance equation, implying frontal equilibration. During the approximately equilibrated phase, the energy exchange rates among the deformation flow, front, and fluctuations are all reduced in comparison with a solution without eddy-flux feedback on the frontal evolution. The mean stratification is enhanced by both frontogenesis and eddy vertical buoyancy flux. The thermally indirect secondary circulation arises from eddy fluxes acting to force a departure in thermal-wind balance for the alongfront flow, overwhelming the single-cell thermally direct circulation induced by the deformation flow. The equilibrated thermal-wind imbalance in the frontal flow is appreciable, and its magnitude is set by the cross-front eddy flux of alongfront vorticity. This demonstrates an essentially inviscid, baroclinic, dynamical process for fronto-genetic arrest through frontal instability.
机译:在大规模变形流中,横向和垂直浮力梯度会通过斜率前缘作用在表面边界附近锐化。在前生过程中会出现一个“热直接”的变质二次循环细胞,以维持沿前流的地转,静水(热风)动量平衡。不稳定的三维波动可能会在前生过程中通过沿前缘剪切流的斜压不稳定性而增长,从而将额叶势能转换为波动能。在有限的振幅下,这些波动提供了沿前平均的涡动量和浮力通量,即使在变形流持续存在的情况下,也阻止了锋面的锐化。额叶营养变质的次级循环逆转,变成在前部中央的“热间接”细胞。这使得额浮力梯度方差(即额骨强度)平衡方程中的变浆对流与涡流散度之间存在近似的对立关系,这意味着额叶平衡。在近似平衡的阶段,与没有关于正面演化的涡流反馈的解决方案相比,变形流,前沿和波动之间的能量交换率都降低了。平均分层通过锋生和涡流垂直浮力通量得到增强。热间接二次循环是由涡流引起的,该涡流的作用是迫使沿前流的热风平衡偏离,从而抵消了由变形流引起的单细胞热直接循环。额流中平衡的热风失衡是明显的,其大小由沿前涡旋的跨前涡流确定。这表明通过额叶不稳定性,额骨遗传停滞本质上是无粘性的斜压动力学过程。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2011年第3期|p.601-619|共19页
  • 作者单位

    Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California;

    Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号