首页> 外文期刊>Journal of Physical Oceanography >The Propagation of Internal Solitary Waves over Variable Topography in a Horizontally Two-Dimensional Framework
【24h】

The Propagation of Internal Solitary Waves over Variable Topography in a Horizontally Two-Dimensional Framework

机译:水平二维框架中内部孤立波在可变形貌上的传播

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a horizontally two-dimensional theory based on a variable-coefficient Kadomtsev-Petviashvili equation, which is developed to investigate oceanic internal solitary waves propagating over variable bathymetry, for general background density stratification and current shear. To illustrate the theory, a typical monthly averaged density stratification is used for the propagation of an internal solitary wave over either a submarine canyon or a submarine plateau. The evolution is essentially determined by two components, nonlinear effects in the main propagation direction and the diffraction modulation effects in the transverse direction. When the initial solitary wave is located in a narrow area, the consequent spreading effects are dominant, resulting in a wave field largely manifested by a significant diminution of the leading waves, together with some trailing shelves of the opposite polarity. On the other hand, if the initial solitary wave is uniform in the transverse direction, then the evolution is more complicated, though it can be explained by an asymptotic theory for a slowly varying solitary wave combined with the generation of trailing shelves needed to satisfy conservation of mass. This theory is used to demonstrate that it is the transverse dependence of the nonlinear coefficient in the Kadomtsev-Petviashvili equation rather than the coefficient of the linear transverse diffraction term that determines how the wave field evolves. The Massachusetts Institute of Technology (MIT) general circulation model is used to provide a comparison with the variable-coefficient Kadomtsev-Petviashvili model, and good qualitative and quantitative agreements are found.
机译:本文提出了一种基于变系数Kadomtsev-Petviashvili方程的水平二维理论,该方程用于研究在可变测深仪上传播的海洋内部孤波,用于一般背景密度分层和电流剪切。为了说明这一理论,典型的月平均密度分层用于内部孤立波在海底峡谷或海底高原上的传播。演化基本上由两个分量决定,主传播方向上的非线性效应和横向方向上的衍射调制效应。当初始孤立波位于狭窄区域时,随之而来的扩散效应占主导地位,从而导致波场在很大程度上由前波的显着减小以及一些相反极性的尾架共同表现出来。另一方面,如果初始孤立波在横向上是均匀的,则演化会更加复杂,尽管可以通过渐进理论来解释缓慢变化的孤立波,并结合满足守恒性的尾架的产生质量。该理论用于证明,确定波场如何演化的是Kadomtsev-Petviashvili方程中非线性系数的横向相关性,而不是线性横向衍射项的系数。麻省理工学院(MIT)的总循环模型用于与变系数Kadomtsev-Petviashvili模型进行比较,并且发现了良好的定性和定量协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号