首页> 外文期刊>Journal of Parallel and Distributed Computing >Self-stabilizing minimum degree spanning tree within one from the optimal degree
【24h】

Self-stabilizing minimum degree spanning tree within one from the optimal degree

机译:自稳定的最小度生成树,距最佳度仅一棵

获取原文
获取原文并翻译 | 示例

摘要

We propose a self-stabilizing algorithm for constructing a Minimum Degree Spanning Tree (MDST) in undirected networks. Starting from an arbitrary state, our algorithm is guaranteed to converge to a legitimate state describing a spanning tree whose maximum node degree is at most △~* + 1, where A~* is the minimum possible maximum degree of a spanning tree of the network. To the best of our knowledge, our algorithm is the first self-stabilizing solution for the construction of a minimum degree spanning tree in undirected graphs. The algorithm uses only local communications (nodes interact only with the neighbors at one hop distance). Moreover, the algorithm is designed to work in any asynchronous message passing network with reliable FIFO channels. Additionally, we use a fine grained atomicity model (i.e., the send/receive atomicity). The time complexity of our solution is O(mn~2 logn) where m is the number of edges and n is the number of nodes. The memory complexity is O(δ logn) in the send-receive atomicity model (S is the maximal degree of the network).
机译:我们提出了一种用于在无向网络中构建最小度生成树(MDST)的自稳定算法。从任意状态开始,我们的算法保证收敛到描述最大节点度最大为△〜* + 1的生成树的合法状态,其中A〜*是网络生成树的最小可能最大程度。据我们所知,我们的算法是在无向图中构造最小度生成树的第一个自稳定解决方案。该算法仅使用本地通信(节点仅在一跳距离处与邻居交互)。此外,该算法旨在在具有可靠FIFO通道的任何异步消息传递网络中工作。另外,我们使用细粒度的原子性模型(即发送/接收原子性)。我们的解决方案的时间复杂度是O(mn〜2 logn),其中m是边的数量,n是节点的数量。在发送-接收原子性模型中,内存复杂度为O(δlogn)(S是网络的最大程度)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号