首页> 外文期刊>Journal of Parallel and Distributed Computing >Optimizing server placement in distributed systems in the presence of competition
【24h】

Optimizing server placement in distributed systems in the presence of competition

机译:在竞争中优化分布式系统中的服务器放置

获取原文
获取原文并翻译 | 示例

摘要

Although the problem of data server placement in parallel and distributed systems has been studied extensively, most of the existing work assumes there is no competition between servers. Hence, their goal is to minimize read, update and storage cost. In this paper, we study the server placement problem in which a new server has to compete with existing servers for user requests. Therefore, in addition to minimizing cost, we also need to maximize the benefit of building a new server. Our major results include three parts. First, for tree-structured systems, we propose an O(| V|~3k) time dynamic programming algorithm to find the optimal placement of k extra servers that maximizes the benefit in a tree with | V| nodes. We also propose an O(|V|~3) time dynamic programming algorithm to find the optimal placement of extra servers that maximizes the benefit, without any constraint on the number of extra servers. Second, for general connected graphs, we prove that the server placement problems are NP-complete, and present three greedy heuristic algorithms, called Greedy Add, Greedy Remove and Greedy Add-Remove, to solve them. Third, we show that if the number of requests a server can handle (i.e., server capacity) is bounded, the server placement problem is NP-complete even for tree networks. We then derive a variation of the same set of greedy heuristic algorithms, with consideration of server capacity constraint, to solve the problem. Our experiment results demonstrate that the greedy algorithms achieve good results, when compared with the upper bounds found by a linear programming algorithm. Greedy Add performs best in the unconstrained model, yielding a benefit within 12% difference from the theoretical upper bound in average. For the constrained model. Greedy Remove performs best for smaller network sizes, while Greedy Add-Remove performs best for larger network sizes. On average, the heuristic algorithms yield a benefit within 13% difference from the theoretical upper bound in the constrained model.
机译:尽管已经广泛研究了数据服务器在并行和分布式系统中的放置问题,但是大多数现有工作都假设服务器之间没有竞争。因此,他们的目标是最大程度地减少读取,更新和存储成本。在本文中,我们研究了服务器放置问题,其中新服务器必须与现有服务器竞争用户请求。因此,除了最小化成本之外,我们还需要最大化构建新服务器的收益。我们的主要结果包括三个部分。首先,对于树结构系统,我们提出了O(| V |〜3k)时间动态规划算法,以找到k个额外服务器的最佳位置,从而最大程度地提高| V |节点。我们还提出了一种O(| V |〜3)时间动态规划算法,以找到额外服务器的最佳位置,从而最大化收益,而对额外服务器的数量没有任何限制。其次,对于一般的连通图,我们证明服务器放置问题是NP完全的,并提出了三种贪婪启发式算法(称为贪婪添加,贪婪删除和贪婪添加删除)来解决它们。第三,我们表明,如果服务器可以处理的请求数(即服务器容量)受到限制,则即使对于树形网络,服务器放置问题也是NP完全的。然后,在考虑服务器容量约束的情况下,我们导出了一组相同的贪婪启发式算法的变体来解决该问题。我们的实验结果表明,与线性规划算法发现的上限相比,贪婪算法取得了良好的效果。在不受约束的模型中,Greedy Add的执行效果最好,与平均理论上限相比,收益在12%以内。对于约束模型。对于较小的网络大小,“贪婪删除”效果最好,而对于较大的网络大小,“贪婪删除”效果最好。平均而言,启发式算法所产生的收益与约束模型中的理论上限相差13%以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号