首页> 外文期刊>Journal of Parallel and Distributed Computing >On scheduling dags for volatile computing platforms: Area-maximizing schedules
【24h】

On scheduling dags for volatile computing platforms: Area-maximizing schedules

机译:关于易失性计算平台的调度问题:最大化调度的区域

获取原文
获取原文并翻译 | 示例

摘要

Many modern computing platforms-notably clouds and desktop grids-exhibit dynamic heterogeneity: the availability and computing power of their constituent resources can change unexpectedly and dynamically, even in the midst of a computation. We introduce a new quality metric, area, for schedules that execute computations having interdependent constituent chores (jobs, tasks, etc.) on such platforms. Area measures the average number of tasks that a schedule renders eligible for execution at each step of a computation. Even though the definition of area does not mention and properties of host platforms (such as volatility), intuition suggests that rendering tasks eligible at a faster rate will have a benign impact on the performance of volatile platforms-and we report on simulation experiments that support this intuition. We derive the basic properties of the area metric and show how to efficiently craft area-maximizing {A-M) schedules for several classes of significant computations. Simulations that compare A-M scheduling against heuristics ranging from lightweight ones (e.g., FIFO) to computationally intensive ones suggest that A-M schedules complete computations on volatile heterogeneous platforms faster than their competition, by percentages that vary with computation structure and platform behavior-but are often in the double digits.
机译:许多现代计算平台(尤其是云和桌面网格)都表现出动态的异构性:即使在计算过程中,其组成资源的可用性和计算能力也会发生意外的动态变化。我们为在此类平台上执行具有相互依赖的组成琐事(作业,任务等)的计算的计划引入了一个新的质量度量(区域)。面积用于衡量计划在计算的每个步骤中可以执行的平均任务数。即使没有提到区域的定义和主机平台的属性(例如波动性),直觉也表明,以更快的速度进行渲染任务将对可变平台的性能产生良性影响-我们报告了支持这种直觉。我们推导了面积度量的基本属性,并展示了如何针对几类重要的计算有效地制定面积最大化(A-M)计划。将AM调度与启发式算法(从轻量级算法(例如FIFO)到计算密集型算法)进行比较的模拟表明,AM在易失性异构平台上以比其竞争更快的速度调度完整的计算,其百分比随计算结构和平台行为的变化而变化,但通常在两位数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号