首页> 外文期刊>Journal of Parallel and Distributed Computing >GPGPU implementation of growing neural gas: Application to 3D scene reconstruction
【24h】

GPGPU implementation of growing neural gas: Application to 3D scene reconstruction

机译:GPGPU实现的神经气体生长方法:在3D场景重建中的应用

获取原文
获取原文并翻译 | 示例

摘要

Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6x compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.
机译:自组织神经模型具有提供输入空间良好表示的能力。特别是生长神经气体(GNG)由于其灵活性,快速适应性和出色的表示质量而成为一种合适的模型。但是,这种学习非常耗时,特别是对于高维输入数据。由于实际的应用程序通常在时间限制下工作,因此有必要调整学习过程,以便在预定的时间内完成学习过程。本文提出了具有计算统一设备体系结构(CUDA)的GNG图形处理单元(GPU)并行实现。与现有算法相反,所提出的GPU实现可加速学习过程,并保持良好的表示质量。进行了使用迭代,并行和混合实现的比较实验,以证明CUDA实现的有效性。结果表明,与单线程CPU实施相比,采用本提议的实施进行GNG学习的速度提高了6倍。 GPU实施也已应用于有时间限制的实际应用:为了自我提议而加速3D场景重建以进行自我运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号