首页> 外文期刊>Journal of Parallel and Distributed Computing >A block-asynchronous relaxation method for graphics processing units
【24h】

A block-asynchronous relaxation method for graphics processing units

机译:图形处理单元的块异步松弛方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (CPUs). We develop asynchronous iteration algorithms in CUDA and compare them with parallel implementations of synchronous relaxation methods on CPU- or GPU-based systems. For a set of test matrices from UFMC we investigate convergence behavior, performance and tolerance to hardware failure. We observe that even for our most basic asynchronous relaxation scheme, the method can efficiently leverage the CPUs computing power and is, despite its lower convergence rate compared to the Gauss-Seidel relaxation, still able to provide solution approximations of certain accuracy in considerably shorter time than Gauss-Seidel running on CPUs- or GPU-based Jacobi. Hence, it overcompensates for the slower convergence by exploiting the scalability and the good fit of the asynchronous schemes for the highly parallel GPU architectures. Further, enhancing the most basic asynchronous approach with hybrid schemes-using multiple iterations within the "subdomain" handled by a GPU thread block-we manage to not only recover the loss of global convergence but often accelerate convergence of up to two times, while keeping the execution time of a global iteration practically the same. The combination with the advantageous properties of asynchronous iteration methods with respect to hardware failure identifies the high potential of the asynchronous methods for Exascale computing.
机译:在本文中,我们分析了图形处理单元(CPU)上异步松弛方法的潜力。我们在CUDA中开发异步迭代算法,并将其与基于CPU或GPU的系统上同步松弛方法的并行实现进行比较。对于UFMC的一组测试矩阵,我们研究了收敛行为,性能和对硬件故障的耐受性。我们观察到,即使对于我们最基本的异步松弛方案,该方法也可以有效地利用CPU的计算能力,尽管与高斯-塞德尔松弛相比其收敛速度较低,但仍能够在相当短的时间内提供一定精度的解决方案近似值而不是在基于CPU或GPU的Jacobi上运行的Gauss-Seidel。因此,它通过利用高度并行GPU架构的异步方案的可伸缩性和良好适应性来补偿较慢的收敛。此外,通过混合方案增强最基本的异步方法-使用GPU线程块处理的“子域”内的多次迭代-我们不仅设法恢复全局收敛性的损失,而且还经常加速收敛两次,同时保持全局迭代的执行时间几乎相同。异步迭代方法在硬件故障方面的优势与优势相结合,确定了异步方法在Exascale计算中的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号