首页> 外文期刊>Journal of Parallel and Distributed Computing >Computing resultants on Graphics Processing Units: Towards GPU-accelerated computer algebra
【24h】

Computing resultants on Graphics Processing Units: Towards GPU-accelerated computer algebra

机译:在图形处理单元上计算结果:转向GPU加速的计算机代数

获取原文
获取原文并翻译 | 示例

摘要

In this article we report on our experience in computing resultants of bivariate polynomials on Graphics Processing Units (GPU). Following the outline of Collins' modular approach [6], our algorithm starts by mapping the input polynomials to a finite field for sufficiently many primes m. Next, the GPU algorithm evaluates the polynomials at a number of fixed points χ ∈ Z_m, and computes a set of univariate resultants for each modular image. Afterwards, the resultant is reconstructed using polynomial interpolation and Chinese remaindering. The GPU returns resultant coefficients in the form of Mixed Radix (MR) digits. Finally, large integer coefficients are recovered from the MR representation on the CPU. All computations performed by the algorithm (except for, partly, Chinese remaindering) are outsourced to the graphics processor thereby minimizing the amount of work to be done on the host machine. The main theoretical contribution of this work is the modification of Collins' modular algorithm using the methods of matrix algebra to make an efficient realization on the GPU feasible. According to the benchmarks, our algorithm outperforms a CPU-based resultant algorithm from 64-bit Maple 14 by a factor of 100.
机译:在本文中,我们报告了我们在图形处理单元(GPU)上计算二元多项式结果的经验。遵循Collins模块化方法[6]的概述,我们的算法从将输入多项式映射到对于足够多素数m的有限域开始。接下来,GPU算法评估多个固定点χ∈Z_m处的多项式,并为每个模块化图像计算一组单变量结果。然后,使用多项式插值和中文余数重构结果。 GPU以混合基数(MR)数字的形式返回合成系数。最后,从CPU上的MR表示中恢复大的整数系数。该算法执行的所有计算(部分保留中文余数)均外包给图形处理器,从而最大程度地减少了要在主机上完成的工作量。这项工作的主要理论贡献是使用矩阵代数的方法对Collins的模块化算法进行了修改,以使在GPU上高效实现成为可能。根据基准测试,我们的算法比64位Maple 14的基于CPU的结果算法性能高100倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号