首页> 外文期刊>Journal of Parallel and Distributed Computing >Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling
【24h】

Distributed anomaly detection for industrial wireless sensor networks based on fuzzy data modelling

机译:基于模糊数据建模的工业无线传感器网络分布式异常检测

获取原文
获取原文并翻译 | 示例

摘要

Modern infrastructure increasingly depends on large computerized systems for their reliable operation. Supervisory Control and Data Acquisition (SCADA) systems are being deployed to monitor and control large scale distributed infrastructures (e.g. power plants, water distribution systems). A recent trend is to incorporate Wireless Sensor Networks (WSNs) to sense and gather data. However, due to the broadcast nature of the network and inherent limitations in the sensor nodes themselves, they are vulnerable to different types of security attacks. Given the critical aspects of the underlying infrastructure it is an extremely important research challenge to provide effective methods to detect malicious activities on these networks. This paper proposes a robust and scalable mechanism that aims to detect malicious anomalies accurately and efficiently using distributed in-network processing in a hierarchical framework. Unsupervised data partitioning is performed distributively adapting fuzzy c-means clustering in an incremental model. Non-parametric and non-probabilistic anomaly detection is performed through fuzzy membership evaluations and thresholds on observed inter-cluster distances. Robust thresholds are determined adaptively using second order statistical knowledge at each evaluation stage. Extensive experiments were performed and the results demonstrate that the proposed framework achieves high detection accuracy compared to existing data clustering approaches with more than 96% less communication overheads opposed to a centralized approach.
机译:现代基础设施越来越依赖大型计算机系统来实现可靠的运行。正在部署监督控制和数据采集(SCADA)系统以监视和控制大规模分布式基础结构(例如电厂,供水系统)。最近的趋势是将无线传感器网络(WSN)合并到传感和收集数据中。但是,由于网络的广播性质和传感器节点本身的固有限制,它们容易受到不同类型的安全攻击。考虑到基础架构的关键方面,提供有效的方法来检测这些网络上的恶意活动是一项极为重要的研究挑战。本文提出了一种健壮且可扩展的机制,旨在使用分层框架中的分布式网络内处理来准确有效地检测恶意异常。无人值守的数据分区是在增量模型中以分布式c-means聚类方式进行的。通过模糊隶属度评估和观察到的集群间距离的阈值执行非参数和非概率异常检测。在每个评估阶段使用二阶统计知识自适应地确定鲁棒阈值。进行了广泛的实验,结果表明,与现有的数据聚类方法相比,所提出的框架具有较高的检测精度,与集中式方法相比,通信开销减少了96%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号