首页> 外文期刊>Journal of Parallel and Distributed Computing >State-based predictions with self-correction on Enterprise Desktop Grid environments
【24h】

State-based predictions with self-correction on Enterprise Desktop Grid environments

机译:在企业桌面网格环境上进行自我校正的基于状态的预测

获取原文
获取原文并翻译 | 示例

摘要

The abundant computing resources in current organizations provide new opportunities for executing parallel scientific applications and using resources. The Enterprise Desktop Grid Computing (EDGC) paradigm addresses the potential for harvesting the idle computing resources of an organization's desktop PCs to support the execution of the company's large-scale applications. In these environments, the accuracy of response-time predictions is essential for effective metascheduling that maximizes resource usage without harming the performance of the parallel and local applications. However, this accuracy is a major challenge due to the heterogeneity and non-dedicated nature of EDGC resources. In this paper, two new prediction techniques are presented based on the state of resources. A thorough analysis by linear regression demonstrated that the proposed techniques capture the real behavior of the parallel applications better than other common techniques in the literature. Moreover, it is possible to reduce deviations with a proper modeling of prediction errors, and thus, a Self-adjustable Correction method (SAC) for detecting and correcting the prediction deviations was proposed with the ability to adapt to the changes in load conditions. An extensive evaluation in a real environment was conducted to validate the SAC method. The results show that the use of SAC increases the accuracy of response-time predictions by 35%. The cost of predictions with self-correction and its accuracy in a real environment was analyzed using a combination of the proposed techniques. The results demonstrate that the cost of predictions is negligible and the combined use of the prediction techniques is preferable.
机译:当前组织中大量的计算资源为执行并行科学应用程序和使用资源提供了新的机会。企业桌面网格计算(EDGC)范例解决了潜在的潜在问题,即可以获取组织的台式PC的空闲计算资源来支持公司大型应用程序的执行。在这些环境中,响应时间预测的准确性对于有效的元调度至关重要,该调度在不损害并行和本地应用程序性能的情况下最大化了资源的使用。然而,由于EDGC资源的异质性和非专用性,这种准确性是一个重大挑战。本文基于资源状态提出了两种新的预测技术。通过线性回归进行的全面分析表明,与文献中的其他常见技术相比,所提出的技术更好地捕获了并行应用程序的真实行为。此外,可以通过对预测误差进行适当的建模来减少偏差,因此,提出了一种具有自适应性的,能够适应负载条件变化的,用于检测和校正预测偏差的自调整校正方法(SAC)。在真实环境中进行了广泛的评估,以验证SAC方法。结果表明,使用SAC可使响应时间预测的准确性提高35%。结合所提出的技术,分析了具有自我校正功能的预测成本及其在实际环境中的准确性。结果表明,预测成本可以忽略不计,并且预测技术的组合使用是可取的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号