首页> 外文期刊>Journal of Parallel and Distributed Computing >Towards scalable model checking of self-stabilizing programs
【24h】

Towards scalable model checking of self-stabilizing programs

机译:迈向自我稳定程序的可扩展模型检查

获取原文
获取原文并翻译 | 示例

摘要

Existing approaches for verifying self-stabilization with a symbolic model checker have relied on the use of weak fairness. We point out that this approach has limited scalability. To overcome this limitation, first, we show that if self-stabilization is possible without fairness then the cost of verifying self-stabilization is substantially lower. In fact, we observe from several case studies that the cost of verification under weak fairness is more than 1000 times that of the cost without fairness.For the case where weak fairness is essential for self-stabilization, we demonstrate the feasibility of two approaches for improving scalability: (1) decomposition and (2) utilizing the weaker version of self-stabilization, namely weak stabilization. In the first approach, the designer partitions the program into components where each component satisfies its property without fairness. We show that the first approach enables us to verify Huang's mutual exclusion program for uniform rings with 31 processes (state space 10~138) whereas without this approach, it was not possible to verify the same program with 5 processes (state space 10~10). In the second approach, a weaker version of self-stabilization is verified. For Hoepman's ring-orientation program on odd-length ring, we show that it is possible to verify weak stabilization for 301 processes (state space 10~181) whereas self-stabilization could not be verified for 9 processes (state space 10~5) under weak fairness. Furthermore, one can utilize transformation algorithms to convert weak stabilizing programs to probabilistically stabilizing programs. Hence, for the case where it is not possible to verify deterministic self-stabilization, one can obtain the assurance provided by probabilistic self-stabilization at a significantly reduced cost. Finally, we also present 5 case studies to illustrate the scalability of stabilization with techniques suggested in this paper.
机译:现有的使用符号模型检查器验证自我稳定的方法都依赖于使用弱公平性。我们指出,这种方法的可扩展性有限。为了克服此限制,首先,我们证明,如果在没有公平的情况下可以进行自我稳定,那么验证自我稳定的成本将大大降低。实际上,我们从几个案例研究中观察到,弱公平性下的验证成本是没有公平性时的成本的1000倍以上。对于弱公平性对于自我稳定至关重要的情况,我们证明了两种方法的可行性提高可伸缩性:(1)分解;(2)利用较弱的自我稳定版本,即弱稳定。在第一种方法中,设计人员将程序划分为多个组件,每个组件都满足其属性而又不公平。我们表明,第一种方法使我们能够验证具有31个进程(状态空间10〜138)的均匀环的Huang互斥程序,而如果没有这种方法,则不可能通过5个进程(状态空间10〜10)来验证同一程序)。在第二种方法中,验证了较弱的自我稳定版本。对于Hoepman在奇长环上的环取向程序,我们表明可以验证301个过程(状态空间10〜181)的弱稳定,而无法验证9个过程(状态空间10〜5)的自稳定在弱小的公平之下。此外,可以利用变换算法将弱稳定程序转换为概率稳定程序。因此,对于不可能验证确定性自稳定的情况,可以以显着降低的成本获得由概率自稳定提供的保证。最后,我们还提出了5个案例研究,以说明本文提出的技术可稳定化的可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号