首页> 外文期刊>Journal of Parallel and Distributed Computing >Accelerated parallel genetic programming tree evaluation with OpenCL
【24h】

Accelerated parallel genetic programming tree evaluation with OpenCL

机译:使用OpenCL加速并行遗传程序树评估

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the process of natural selection, genetic programming (GP) aims at automatically building arbitrarily complex computer programs. Being classified as an "embarrassingly" parallel technique, GP can theoretically scale up to tackle very diverse problems by increasingly adding computational power to its arsenal. With today's availability of many powerful parallel architectures, a challenge is to take advantage of all those heterogeneous compute devices in a portable and uniform way. This work proposes both (ⅰ) a transcription of existing GP parallelization strategies into the OpenCL programming platform; and (ⅱ) a freely available implementation to evaluate its suitability for GP, by assessing the performance of parallel strategies on the CPU and GPU processors from different vendors. Benchmarks on the symbolic regression and data classification domains were performed. On the GPU we could achieve 13 billion node evaluations per second, delivering almost 10 times the throughput of a twelve-core CPU.
机译:受自然选择过程的启发,基因编程(GP)旨在自动构建任意复杂的计算机程序。 GP被归类为“令人尴尬的”并行技术,在理论上可以通过向其武器库增加计算能力来扩展规模以解决非常多样化的问题。随着当今许多强大的并行体系结构的可用性,面临的挑战是以可移植且统一的方式利用所有这些异构计算设备。这项工作建议(ⅰ)将现有的GP并行化策略复制到OpenCL编程平台中; (ⅱ)通过评估不同供应商在CPU和GPU处理器上的并行策略的性能来免费评估其对GP的适用性。进行了符号回归和数据分类领域的基准测试。在GPU上,我们每秒可以达到130亿个节点评估,其吞吐量几乎是十二核CPU的十倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号