首页> 外文期刊>Journal of Parallel and Distributed Computing >Task scheduling using NSGA Ⅱ with fuzzy adaptive operators for computational grids
【24h】

Task scheduling using NSGA Ⅱ with fuzzy adaptive operators for computational grids

机译:基于NSGAⅡ和模糊自适应算子的任务调度。

获取原文
获取原文并翻译 | 示例

摘要

Scheduling algorithms have an essential role in computational grids for managing jobs, and assigning them to appropriate resources. An efficient task scheduling algorithm can achieve minimum execution time and maximum resource utilization by providing the load balance between resources in the grid. The superiority of genetic algorithm in the scheduling of tasks has been proven in the literature. In this paper, we improve the famous multi-objective genetic algorithm known as NSGA-Ⅱ using fuzzy operators to improve quality and performance of task scheduling in the market-based grid environment Load balancing, Makespan and Price are three important objectives for multi-objective optimization in the task scheduling problem in the grid. Grid users do not attend load balancing in making decision, so it is desirable that all solutions have good load balancing. Thus to decrease computation and ease decision making through the users, we should consider and improve the load balancing problem in the task scheduling indirectly using the fuzzy system without implementing the third objective function. We have used fuzzy operators for this purpose and more quality and variety in Pareto-optimal solutions. Three functions are defined to generate inputs for fuzzy systems. Variance of costs, variance of frequency of involved resources in scheduling and variance of genes values are used to determine probabilities of crossover and mutation intelligently. Variance of frequency of involved resources with cooperation of Makespan objective satisfies load balancing objective indirectly. Variance of genes values and variance of costs are used in the mutation fuzzy system to improve diversity and quality of Pareto optimal front. Our method conducts the algorithm towards best and most appropriate solutions with load balancing in less iteration. The obtained results have proved that our innovative algorithm converges to Pareto-optimal solutions faster and with more quality.
机译:调度算法在计算网格中起着至关重要的作用,用于管理作业并将其分配给适当的资源。通过在网格中的资源之间提供负载平衡,高效的任务调度算法可以实现最少的执行时间和最大的资源利用率。文献已经证明了遗传算法在任务调度中的优越性。在本文中,我们改进了著名的多目标遗传算法NSGA-Ⅱ,该算法使用模糊算子提高了基于市场的网格环境中任务调度的质量和性能。负载均衡,makespan和Price是多目标的三个重要目标网格中任务调度问题的优化。网格用户在制定决策时不会参与负载平衡,因此希望所有解决方案都具有良好的负载平衡。因此,为了减少计算量并简化用户的决策,我们应该在不执行第三目标函数的情况下,使用模糊系统间接考虑并改善任务调度中的负载平衡问题。为此,我们已经使用了模糊算子,并在帕累托最优解中使用了更多的质量和种类。定义了三个函数来生成模糊系统的输入。成本差异,调度中涉及资源的频率差异和基因值差异用于智能确定交叉和变异的概率。通过Makespan目标的协作,所涉及资源的频率差异可以间接满足负载均衡目标。在变异模糊系统中使用基因值的差异和成本的方差来提高帕累托最优前沿的多样性和质量。我们的方法将算法推向最佳和最合适的解决方案,并以较少的迭代实现负载平衡。所得结果证明,我们的创新算法可以更快,更高质量地收敛到帕累托最优解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号