首页> 外文期刊>Journal of Parallel and Distributed Computing >Hypergraph partitioning for multiple communication cost metrics: Model and methods
【24h】

Hypergraph partitioning for multiple communication cost metrics: Model and methods

机译:用于多种通信成本指标的超图分区:模型和方法

获取原文
获取原文并翻译 | 示例

摘要

We investigate hypergraph partitioning-based methods for efficient parallelization of communicating tasks. A good partitioning method should divide the load among the processors as evenly as possible and minimize the inter-processor communication overhead. The total communication volume is the most popular communication overhead metric which is reduced by the existing state-of-the-art hypergraph partitioners. However, other metrics such as the total number of messages, the maximum amount of data transferred by a processor, or a combination of them are equally, if not more, important. Existing hypergraph-based solutions use a two phase approach to minimize such metrics where in each phase, they minimize a different metric, sometimes at the expense of others. We propose a one-phase approach where all the communication cost metrics can be effectively minimized in a multi-objective setting and reductions can be achieved for all metrics together. For an accurate modeling of the maximum volume and the number of messages sent and received by a processor, we propose the use of directed hypergraphs. The directions on hyperedges necessitate revisiting the standard partitioning heuristics. We do so and propose a multi-objective, multi-level hypergraph partitioner called UMPa. The partitioner takes various prioritized communication metrics into account, and optimizes all of them together in the same phase. Compared to the state-of-the-art methods which only minimize the total communication volume, we show on a large number of problem instances that UMPa produces better partitions in terms of several communication metrics.
机译:我们研究基于超图分区的方法,以有效地并行执行通信任务。好的分区方法应尽可能平均地在处理器之间分配负载,并最大程度地减少处理器间的通信开销。总通信量是最流行的通信开销量度,它通过现有的最新超图分区程序来减少。但是,其他指标(例如消息总数,处理器传输的最大数据量或它们的组合)同等重要(甚至更多)也很重要。现有的基于超图的解决方案使用两阶段方法来最小化此类指标,而在每个阶段中,它们会最小化其他指标,有时会以其他指标为代价。我们提出一种单阶段方法,其中在多目标设置中可以有效地最小化所有通信成本指标,并且可以一起降低所有指标的成本。为了对处理器发送和接收的最大数量和消息数量进行精确建模,我们建议使用有向超图。有关超边缘的说明,有必要重新研究标准的分区启发法。我们这样做,并提出了一个称为UMPa的多目标,多级超图分区程序。分区程序会考虑各种优先的通信指标,并在同一阶段一起优化所有这些指标。与仅使总通信量最小化的最新方法相比,我们在大量问题实例中表明,UMPa在多个通信指标方面产生了更好的分区。

著录项

  • 来源
  • 作者单位

    Department of Computer Science and Engineering, The Ohio State University, Columbus OH, USA,Department of Biomedical Informatics, The Ohio State University, Columbus OH, USA;

    Department of Biomedical Informatics, The Ohio State University, Columbus OH, USA,Computer Science and Engineering, SabanaUniversity, Istanbul, Turkey;

    CNRS and LIP, ENS Lyon, France;

    Department of Biomedical Informatics, The Ohio State University, Columbus OH, USA,Department of Electrical and Computer Engineering, The Ohio State University, Columbus OH, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hypergraph; Graph; Partitioning; Load balancing;

    机译:超图图形;分区;负载均衡;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号