首页> 外文期刊>Journal of Parallel and Distributed Computing >Toward high-performance key-value stores through GPU encoding and locality-aware encoding
【24h】

Toward high-performance key-value stores through GPU encoding and locality-aware encoding

机译:通过GPU编码和位置感知编码实现高性能键值存储

获取原文
获取原文并翻译 | 示例

摘要

Although distributed key-value store is becoming increasingly popular in compensating the conventional distributed file systems, it is often criticized due to its costly full-size replication for high availability that causes high I/O overhead. This paper presents two techniques to mitigate such I/O overhead and improve key-value store performance: GPU encoding and locality-aware encoding. Instead of migrating full-size replicas over the network, we split the original file into smaller chunks and encode them with a few additional parity codes using GPUs before dispersing them onto remote nodes. The parity code is usually much smaller than the original file, which saves the extra space required for high availability and reduces the I/O overhead. Meanwhile, the compute-intensive encoding process is largely accelerated by the massive number of GPU cores. Yet, splitting the original file into smaller chunks stored on multiple nodes breaks data locality from application's perspective. To this end, we present a locality-aware encoding mechanism that allows a job to be dispatched as finer-grained tasks right on the node where the required chunk resides. Therefore, the data locality is preserved at the finer granularity of sub-job (i.e., task) level. We conduct an in-depth analysis of the proposed approach and implement a system prototype named Gest. Gest has been deployed and evaluated on a variety of testbeds demonstrating that high data availability, high space efficiency, and high I/O performance could be collectively achieved at the same time.
机译:尽管分布式键值存储在补偿常规分布式文件系统中变得越来越流行,但由于其昂贵的全尺寸复制以实现高可用性而引起高I / O开销,因此经常遭到批评。本文提出了两种减轻I / O开销并提高键值存储性能的技术:GPU编码和位置感知编码。与其在网络上迁移原尺寸副本,不如将原始文件拆分为较小的块,并使用一些其他奇偶校验代码使用GPU对其进行编码,然后再将其分散到远程节点上。奇偶校验代码通常比原始文件小得多,从而节省了高可用性所需的额外空间并减少了I / O开销。同时,大量GPU内核大大加快了计算密集型编码过程。但是,从应用程序的角度来看,将原始文件分成存储在多个节点上的较小块会破坏数据局部性。为此,我们提出了一种区域感知的编码机制,该机制允许将作业作为更细粒度的任务分派到所需块所在的节点上。因此,数据局部性保留在子作业(即任务)级别的更细粒度上。我们对提出的方法进行了深入分析,并实现了名为Gest的系统原型。 Gest已在各种测试平台上进行了部署和评估,表明可以同时实现高数据可用性,高空间效率和高I / O性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号