首页> 外文期刊>Journal of Parallel and Distributed Computing >Machine learning-based thread-parallelism regulation in software transactional memory
【24h】

Machine learning-based thread-parallelism regulation in software transactional memory

机译:软件事务存储中基于机器学习的线程并行度调节

获取原文
获取原文并翻译 | 示例

摘要

Abstract Transactional Memory (TM) stands as a powerful paradigm for manipulating shared data in concurrent applications. It avoids the drawbacks of coarse grain locking schemes, namely the potentially excessive limitation of concurrency, while jointly providing support for synchronization transparency to the programmers, which is achieved by embedding code-blocks accessing shared data within transactions. On the downside, excessive transaction aborts may arise in scenarios with non-negligible volumes of conflicting data accesses, which might significantly impair performance. TM needs therefore to resort to methods enabling applications to run with the maximum degree of transaction concurrency that still avoids thrashing. In this article, we focus on Software TM (STM) implementations and present a machine learning-based approach that enables the dynamic selection of the best suited number of threads to be kept alive along specific phases of the execution of STM applications, depending on (variations of) the shared data access pattern. Two key contributions are provided with our approach: (i) the identification of the well suited set of features allowing the instantiation of a reliable neural network-based performance model and (ii) the introduction of mechanisms enabling the reduction of the run-time overhead for sampling these features. We integrated a real implementation of our machine learning-based thread-parallelism regulation approach within the TinySTM open source package and present experimental data, based on the STAMP benchmark suite, which show the effectiveness of the presented thread-parallelism regulation policy in optimizing transaction throughput. Highlights Performance modeling and optimization. Thread scheduling techniques and concurrency level optimization. Adaptive transactional memory systems. Machine learning. Benchmarking of transactional memory systems.
机译: 摘要 事务内存(TM)是在并发应用程序中处理共享数据的强大范例。它避免了粗粒度锁定方案的缺点,即潜在的并发限制,同时为程序员提供了同步透明性的共同支持,这是通过将访问访问共享数据的代码块嵌入事务中来实现的。不利的一面是,在冲突访问的数据量不可忽略的情况下,可能会发生过多的事务中止,这可能会严重影响性能。因此,TM需要诉诸使应用程序能够以最大程度的事务并发度运行的方法,而这些并发程度仍可避免崩溃。在本文中,我们将重点介绍Software TM(STM)的实现,并提出一种基于机器学习的方法,该方法可以在STM应用程序执行的特定阶段中动态选择最合适数量的线程,这些线程取决于(共享数据访问模式的变体。我们的方法提供了两个关键的贡献:(i)识别出非常合适的一组功能,这些实例允许实例化可靠的基于神经网络的性能模型;(ii)引入了可以减少运行时开销的机制对这些功能进行采样。我们在TinySTM开源软件包中集成了基于机器学习的线程并行调节方法的真实实现,并基于STAMP基准套件提供了实验数据,该数据表明了所提出的线程并行调节策略在优化事务吞吐量方面的有效性。 突出显示 性能建模和优化。 线程调度技术和并发级别优化。 自适应事务存储系统。 机器学习。 < ce:para view =“ all” id =“ d1e1320”>标记交易事务系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号