首页> 外文期刊>Journal of Parallel and Distributed Computing >A tasks reordering model to reduce transfers overhead on GPUs
【24h】

A tasks reordering model to reduce transfers overhead on GPUs

机译:任务重新排序模型可减少GPU上的传输开销

获取原文
获取原文并翻译 | 示例

摘要

Abstract The compute capabilities of current GPUs allow exploiting concurrency when several independent tasks are simultaneously launched. These tasks are typically composed by data transfer commands and kernel computation commands. In this paper we develop a run-time approach to optimize the concurrency between data transfers and kernel computation operations in a multithreaded scenario where each CPU thread is sending tasks to the GPU. Our solution is based on a temporal execution model for concurrent tasks that is able to establish the tasks execution order that minimizes the total execution time, including data transfers. Moreover, a heuristic to select the best order has been developed, which is able to improve the execution time achieved by the hardware scheduler of current NVIDIA cards. Our approach obtains performance improvements, under real workloads, of up to 19% with respect to the execution using multiple hardware queues managed by Hyper-Q. Highlights Execution of sets of independent tasks using CUDA streams is studied. A temporal model for simulating the execution of independent tasks is introduced. A dynamic scheduling method to dispatch tasks in a specific order is presented. A heuristic for obtaining a near minimum execution time is developed. An increase in concurrency, compared with Hyper-Q, is demonstrated.
机译: 摘要 当前GPU的计算功能可在同时启动多个独立任务时利用并发性。这些任务通常由数据传输命令和内核计算命令组成。在本文中,我们开发了一种运行时方法,以在每个CPU线程向GPU发送任务的多线程场景中优化数据传输与内核计算操作之间的并发性。我们的解决方案基于并发任务的临时执行模型,该模型能够建立任务执行顺序,从而最大程度地减少包括数据传输在内的总执行时间。此外,已经开发出一种选择最佳顺序的试探法,它能够缩短当前NVIDIA卡的硬件调度程序所实现的执行时间。在使用Hyper-Q管理的多个硬件队列执行时,我们的方法在实际工作负载下的性能提高了19%。 突出显示 研究了使用CUDA流执行独立任务集的方法。 时间模态 < ce:para view =“ all” id =“ d1e1910”>提出了一种以特定顺序调度任务的动态调度方法。 开发了一种获取接近最小执行时间的试探法。 < / ce:list-item> 并发性增加

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号