首页> 外文期刊>Journal of Parallel and Distributed Computing >A quantitative roofline model for GPU kernel performance estimation using micro-benchmarks and hardware metric profiling
【24h】

A quantitative roofline model for GPU kernel performance estimation using micro-benchmarks and hardware metric profiling

机译:使用微基准和硬件度量分析的GPU内核性能评估的定量屋顶模型

获取原文
获取原文并翻译 | 示例

摘要

Typically, the execution time of a kernel on a GPU is a difficult to predict measure as it depends on a wide range of factors. Performance can be limited by either memory transfer, compute throughput or other latencies. In this paper, we improve on the roofline model following a quantitative approach and present a completely automated GPU performance prediction technique. In this respect this model utilizes micro-benchmarking and profiling in a "black box" fashion as no inspection of source/binary code is required. The proposed model combines parameters in order to characterize the performance limiting factor and to estimate execution time. In addition, we propose the quadrant-split visual representation, which captures the characteristics of multiple processors in relation to a particular kernel. We performed experiments on stencil computation (red/black SOR), SGEMM and a total of 28 kernels of the Rodinia benchmark suite, using six CUDA CPUs and we showed an absolute error in predictions of 27.66% in the average case. Furthermore, the performance model was also examined on an AMD GPU through the HIP programming environment. Prediction errors were comparable despite the significant architectural differences between different vendor GPUs.
机译:通常,GPU上内核的执行时间很难预测,因为它取决于多种因素。内存传输,计算吞吐量或其他延迟可能会限制性能。在本文中,我们采用定量方法改进了车顶线模型,并提出了一种全自动的GPU性能预测技术。在这方面,由于不需要检查源代码/二进制代码,因此该模型以“黑匣子”方式利用了微基准测试和配置文件。所提出的模型结合了参数,以表征性能限制因素并估计执行时间。此外,我们提出了象限分割的视觉表示,它捕获了与特定内核有关的多个处理器的特征。我们使用六个CUDA CPU对模板计算(红色/黑色SOR),SGEMM和Rodinia基准套件的总共28个内核进行了实验,在平均情况下,预测的绝对误差为27.66%。此外,还通过HIP编程环境在AMD GPU上检查了性能模型。尽管不同供应商GPU之间的体系结构存在显着差异,但预测错误仍具有可比性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号