首页> 外文期刊>Journal of Parallel and Distributed Computing >High productivity multi-device exploitation with the Heterogeneous Programming Library
【24h】

High productivity multi-device exploitation with the Heterogeneous Programming Library

机译:异构编程库可实现高生产率的多设备开发

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous devices require much more work from programmers than traditional CPUs, particularly when there are several of them, as each one has its own memory space. Multi-device applications require to distribute kernel executions and, even worse, arrays portions that must be kept coherent among the different device memories and the host memory. In addition, when devices with different characteristics participate in a computation, optimally distributing the work among them is not trivial. In this paper we extend an existing framework for the programming of accelerators called Heterogeneous Programming Library (HPL) with three kinds of improvements that facilitate these tasks. The first two ones are the ability to define subarrays and subkernels, which distribute kernels on different devices. The last one is a convenient extension of the subkernel mechanism to distribute computations among heterogeneous devices seeking the best work balance among them. This last contribution includes two analytical models that have proved to automatically provide very good work distributions. Our experiments also show the large programmability advantages of our approach and the negligible overhead incurred.
机译:与传统的CPU相比,异构设备需要程序员进行更多的工作,尤其是当它们数量众多时,因为每个设备都有自己的内存空间。多设备应用程序需要分发内核执行,甚至更糟的是,必须在不同的设备内存和主机内存之间保持一致的数组部分。另外,当具有不同特性的设备参与计算时,在它们之间最佳地分配工作并非易事。在本文中,我们通过三种促进这些任务的改进来扩展用于加速器编程的现有框架,称为异构编程库(HPL)。前两个是定义子阵列和子内核的能力,它们可以将内核分布在不同的设备上。最后一个是子内核机制的便捷扩展,可以在异构设备之间分配计算,以在其中寻求最佳工作平衡。最后的贡献包括两个已被证明可以自动提供非常好的工作分配的分析模型。我们的实验还显示了我们方法的巨大可编程性优势以及所产生的可忽略的开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号