首页> 外文期刊>Journal of Parallel and Distributed Computing >An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders
【24h】

An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders

机译:利用堆叠降噪自动编码器的高效提前日电负荷预测深度模型

获取原文
获取原文并翻译 | 示例

摘要

In real word it is quite meaningful to forecast the day-ahead electricity load for an area, which is beneficial to reduction of electricity waste and rational arrangement of electric generator units. The deployment of various sensors strongly pushes this forecasting research into a “big data” era for a huge amount of information has been accumulated. Meanwhile the prosperous development of deep learning (DL) theory provides powerful tools to handle massive data and often outperforms conventional machine learning methods in many traditional fields. Inspired by these, we propose a deep learning based model which firstly refines features by stacked denoising auto-encoders (SDAs) from history electricity load data and related temperature parameters, subsequently trains a support vector regression (SVR) model to forecast the day-ahead total electricity load. The most significant contribution of this heterogeneous deep model is that the abstract features extracted by SADs from original electricity load data are proven to describe and forecast the load tendency more accurately with lower errors. We evaluate this proposed model by comparing with plain SVR and artificial neural networks (ANNs) models, and the experimental results validate its performance improvements.
机译:实际上,预测一个区域的日间用电负荷是非常有意义的,这有利于减少电力浪费和合理安排发电机组。各种传感器的部署有力地将这种预测研究推向了“大数据”时代,因为已经积累了大量的信息。同时,深度学习(DL)理论的蓬勃发展提供了强大的工具来处理海量数据,并且在许多传统领域中通常优于传统的机器学习方法。受到这些启发,我们提出了一种基于深度学习的模型,该模型首先通过根据历史用电负荷数据和相关温度参数通过叠加去噪自动编码器(SDA)来完善特征,然后训练支持向量回归(SVR)模型来预测未来情况总电力负荷。该异构深度模型的最大贡献在于,已证明SAD从原始电力负荷数据中提取的抽象特征可以以较低的误差更准确地描述和预测负荷趋势。我们通过与普通SVR和人工神经网络(ANN)模型进行比较来评估此提议的模型,并且实验结果验证了其性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号