首页> 外文期刊>Journal of Parallel and Distributed Computing >QoS-aware service recommendation based on relational topic model and factorization machines for IoT Mashup applications
【24h】

QoS-aware service recommendation based on relational topic model and factorization machines for IoT Mashup applications

机译:基于关系主题模型和IOT Mashup应用程序的分解机的QoS感知服务推荐

获取原文
获取原文并翻译 | 示例

摘要

IoT Mashup applications allow developer to compose existing Web APIs to create value-added composite Web services. The rapid growth of large-scale and complex services makes it difficult to find suitable Web APIs to build loT Mashup applications for developers. Even if the existing service recommendation methods show improvements in service discovery, the accuracy of them can be significantly improved due to overlooking the impact of sparsity and multiple-dimension information of QoS between Mashup and services on recommendation accuracy. In this paper, we propose a QoS-aware service recommendation based on relational topic model and factorization machines for loT Mashup applications. This method first uses relational topic model to characterize the relationships among Mashup, services, and their links, and mine the latent topics derived by the relationships. Second, it exploits factorization machines to train the latent topics for predicting the link relationship among Mashup and services to recommend adequate relevant top-k Web APIs for target loT Mashup creation. Finally, we conduct a comprehensive evaluation to measure performance of our method. Compared with other existing recommendation approaches, experimental results show that our approach achieves a significant improvement in terms of precision, recall, and F-measure. (C) 2018 Elsevier Inc. All rights reserved.
机译:IoT Mashup应用程序允许开发人员撰写现有Web API以创建增值复合Web服务。大规模和复杂服务的快速增长使得很难找到合适的Web API,以为开发人员构建批次Mashup应用程序。即使现有的服务推荐方法显示服务发现的改进,也可以显着改善它们的准确性,因为忽略了在建议准确性上的Mashup和服务之间的QoS的QoS的影响和多维信息的影响。在本文中,我们提出了一种基于关系主题模型和分解机的QoS感知服务推荐,用于批次MASHUP应用程序。此方法首先使用关系主题模型来表征Mashup,Services及其链接之间的关系,并挖掘关系的潜在主题。其次,它利用分解机来训练潜在主题,以预测Mashup和服务之间的链接关系,为目标批次Mashup创建推荐足够的相关Top-K Web API。最后,我们进行了全面的评估来衡量方法的性能。与其他现有推荐方法相比,实验结果表明,我们的方法在精确,召回和F测量方面取得了重大改进。 (c)2018 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Journal of Parallel and Distributed Computing》 |2019年第10期|177-189|共13页
  • 作者单位

    Hunan Univ Sci & Technol Key Lab Knowledge Proc & Networked Manufacture Xiangtan Peoples R China|Beijing Univ Posts & Telecommun State Key Lab Networking & Switching Technol Beijing Peoples R China;

    Hunan Univ Sci & Technol Key Lab Knowledge Proc & Networked Manufacture Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Knowledge Proc & Networked Manufacture Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Knowledge Proc & Networked Manufacture Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Knowledge Proc & Networked Manufacture Xiangtan Peoples R China;

    Hunan Univ Sci & Technol Key Lab Knowledge Proc & Networked Manufacture Xiangtan Peoples R China|Swinburne Univ Technol Swinburne Data Sci Res Inst Melbourne Vic Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    QoS; Service recommendation; Relational topic model; Factorization machines; loT Mashup applications;

    机译:QoS;服务推荐;关系主题模型;分解机;批次Mashup应用程序;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号