首页> 外文期刊>Journal of Parallel and Distributed Computing >Improving hardware transactional memory parallelization of computational geometry algorithms using privatizing transactions
【24h】

Improving hardware transactional memory parallelization of computational geometry algorithms using privatizing transactions

机译:使用私有化交易改进计算几何算法的硬件事务性记忆并行化

获取原文
获取原文并翻译 | 示例

摘要

Hardware transactional memory is a new parallel programming paradigm supported by current commercial multiprocessors. This paradigm provides optimistic concurrency and overcomes some of the problems associated with classical lock-based synchronization, such as deadlock and serialization. Certain algorithms of computational geometry are found to be good candidates for parallelization with this paradigm. However, hardware transactional approaches to these algorithms lead to poor performance as the resulting transactions are too large for the underlying hardware to deal with. Large transactions overflow hardware resources serializing the execution.In this paper, we propose using privatizing transactions to parallelize two computational geometry algorithms: Lee's algorithm, which solves the shortest-route problem, and Ruppert's algorithm for Delaunay/Voronoi mesh refinement. Privatizing transactions are based on commercial hardware transactional memory extensions, and their goal is to reduce transaction footprint by means of a non-transactional private execution section. This results in effective smaller transactions. Our implementation is able to further reduce the transaction size as we propose a reduced validation set for privatizing transactions. Programming complexity of these implementations is discussed.Results show that our privatizing transaction implementations indeed enhance performance comparing with existing hardware transactional memory versions. Experiments with Intel's transactional memory extensions yield speedups ranging from 2x to 3.5x with four threads. (C) 2019 Elsevier Inc. All rights reserved.
机译:硬件事务存储器是当前商业多处理器支持的新并行编程范例。此范例提供了乐观的并发性,并克服了与基于古典锁的同步相关的一些问题,例如死锁和序列化。发现某些计算几何算法是与该范例并行化的好候选者。然而,由于这些算法的硬件交易方法导致性能差,因为所得到的交易对于底层硬件来处理太大。大型事务溢出硬件资源序列化执行。本文建议使用私私事务并行化两个计算几何算法:Lee的算法,解决了最短的路线问题,以及鲁珀特算法的Delaunay / Voronoi网格精制。私有化事务基于商业硬件事务内存扩展,其目标是通过非交易私有执行部分减少交易占用。这导致有效的较小交易。我们的实现能够进一步降低交易规模,因为我们提出了私有化事务的减少验证集。讨论了这些实现的编程复杂性。结果表明,我们的私有化事务实现确实增强了与现有硬件事务内存版本进行比较的性能。用英特尔的事务记忆延伸的实验会产生从2倍到3.5倍的加速度,有四个线程。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号