首页> 外文期刊>Journal of Parallel and Distributed Computing >Automatic social signal analysis: Facial expression recognition using difference convolution neural network
【24h】

Automatic social signal analysis: Facial expression recognition using difference convolution neural network

机译:自动社交信号分析:使用差异卷积神经网络的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Facial expression is one of the most powerful social signals for human beings to convey emotion and intention, hence automatic facial expression recognition (FER) has wide applications in human computer interaction and affective computing, it has attracted an increasing attention recently. Researches in this field have made great progress especially with the development of deep learning method. However, FER remains a challenging task due to individual differences. To address the issue, we propose a two-stage framework based on Difference Convolution Neural Network (DCNN) inspired by the facial expression's nonstationary nature. In the first stage, the neutral expression frame and fully expression frame are automatically picked out from the facial expression sequences using a binary Convolution Neural Network (CNN). Then in the second stage, an end-to-end DCNN is proposed to classify the six basic facial expressions using the difference information between the neutral expression frame and the fully expression frame. Experiments have been conducted on the CK+ and BU-4DFE datasets, and the results show that the proposed framework delivers a promising performance (95.4% on the CK+ dataset and 77.4% on the BU-4DFE). Moreover, the proposed method is also successfully applied to analyze the student's affective state in an E-learning environment which suggests that it has strong potential to analyze nonstationary social signals. (C) 2019 Elsevier Inc. All rights reserved.
机译:面部表情是人类传达情感和意图的最有力的社会信号之一,因此自动面部表情识别(FER)在人机交互和情感计算中具有广泛的应用,近来受到越来越多的关注。随着深度学习方法的发展,该领域的研究取得了长足的进步。但是,由于个人差异,FER仍然是一项艰巨的任务。为了解决这个问题,我们提出了一个基于差异卷积神经网络(DCNN)的两阶段框架,该框架受到了面部表情的非平稳本质的启发。在第一阶段,使用二进制卷积神经网络(CNN)从面部表情序列中自动选择中性表情框架和完全表情框架。然后在第二阶段中,提出了一种端到端DCNN,使用中性表情框和完全表情框之间的差异信息对六个基本面部表情进行分类。已经对CK +和BU-4DFE数据集进行了实验,结果表明,提出的框架提供了有希望的性能(CK +数据集为95.4%,BU-4DFE为77.4%)。此外,所提出的方法还成功地用于分析电子学习环境中学生的情感状态,这表明它具有分析非平稳社会信号的强大潜力。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号