首页> 外文期刊>Journal of Parallel and Distributed Computing >Towards predictable performance via two-layer bandwidth allocation in cloud datacenter
【24h】

Towards predictable performance via two-layer bandwidth allocation in cloud datacenter

机译:通过云数据中心中的两层带宽分配来实现可预测的性能

获取原文
获取原文并翻译 | 示例

摘要

In today's production-grade cloud datacenters, cloud service providers do not offer any bandwidth guarantee between VMs, which results in unpredictable performance of tenants' applications. The research community has recognized this problem; however, existing solutions to bandwidth allocation fail to take into consideration tenants' request for bandwidth and the actual bandwidth usage of applications simultaneously, which leads to a waste of bandwidth resources or unpredictable performance. To address these issues, we present SpongeNet, a bandwidth allocation solution that consists of three components through two layers-static bandwidth guarantees at the tenant layer and a dynamic rate allocation at the application layer to realize predictable performance. The first component, named FGVC model, is a network abstraction model that provides a simple, accurate and flexible way for tenants to specify network requirements and achieve high utilization through bandwidth saving. The second component is a two-phase VM placement algorithm that provides optimal combinations of ordering policies and dispatching policies to meet multiple goals. The third component, named E-F runtime mechanism, can achieve the fairness between guaranteed and unguaranteed tenants in utilizing the unused bandwidth resources. Extensive simulations based on real application traces and 3-level tree topology show that SpongeNet enhances bandwidth saving when compared to the state-of-the-art solutions (e.g., the Oktopus system), and significantly improves the throughput rate by 18% and response time by 92%. With a small prototype implementation on a 7-server testbed, we demonstrate that SpongeNet provides fair work conserving bandwidth guarantee among all tenants, even in extreme cases. (C) 2018 Elsevier Inc. All rights reserved.
机译:在当今的生产级云数据中心中,云服务提供商无法在VM之间提供任何带宽保证,这会导致租户的应用程序性能无法预测。研究界已经意识到了这个问题。但是,现有的带宽分配解决方案未能同时考虑租户对带宽的请求和应用程序的实际带宽使用情况,这导致带宽资源的浪费或性能无法预测。为了解决这些问题,我们介绍了SpongeNet,它是一个带宽分配解决方案,它由两层组成,分为三个部分:租户层的静态带宽保证和应用程序层的动态速率分配,以实现可预测的性能。第一个组件称为FGVC模型,是一个网络抽象模型,它为租户提供一种简单,准确和灵活的方式来指定租户指定网络要求并通过节省带宽来实现高利用率。第二个组件是两阶段的VM放置算法,该算法提供订购策略和调度策略的最佳组合,以满足多个目标。第三个组件称为E-F运行时机制,可以在利用未使用的带宽资源时实现有保证和无保证的租户之间的公平性。基于实际应用程序跟踪和三级树形拓扑的大量仿真表明,与最新的解决方案(例如,Oktopus系统)相比,SpongeNet增强了带宽节省,并且将吞吐率和响应速度显着提高了18%时间减少了92%。通过在7个服务器的测试平台上使用小型原型实现,我们证明SpongeNet即使在极端情况下也能在所有租户之间提供公平的工作来节省带宽保证。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号