首页> 外文期刊>Journal of Parallel and Distributed Computing >A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines in cloud data centers
【24h】

A learning automata-based algorithm for energy and SLA efficient consolidation of virtual machines in cloud data centers

机译:一种基于学习自动机的算法,用于云数据中心中虚拟机的能源和SLA有效整合

获取原文
获取原文并翻译 | 示例

摘要

AbstractResource management in cloud computing consists of allocating processing resources, storage, and network to a set of software applications. Resource providers focus on performance and utilization of resources considering the constraints of service level agreement. Resource performance is achieved by virtualization techniques, which share infrastructure of the resource provider between different virtual machines. This study proposes a novel algorithm based on learning automata, which improves resource utilization and reduces energy consumption. The proposed algorithm considers changes in the user demanded resources to predict the PM, which may suffer from overload. Due to preventing server overload, the proposed algorithm improves PMs’ utilization, reduces the number of migrations, and shuts down idle servers to reduce the energy consumption of the data center. The proposed algorithm is simulated in CloudSim simulator; the 10-day processor information of a real PlanetLab cloud infrastructure system are used for workload data. Performance of the proposed algorithm is compared with existing algorithms such as DVFS, NPA, and the threshold algorithm in terms of energy consumption and the number of shut down PMs. Simulation results indicate that the proposed algorithm outperforms other algorithms with 175.48 Kwh, 0.00326 in energy consumption, SLA violation respectively.HighlightsProposing a Power and SLA efficient resource allocation algorithm optimizing energy consumption, number of VM migrations and SLA violations.Using Learning Automata to adapt to environment parameters.Employment of learning automata to prevent of service level agreement violation and physical machine overload.
机译: 摘要 云计算中的资源管理包括分配处理资源,存储和网络一组软件应用程序。考虑服务水平协议的约束,资源提供者专注于资源的性能和利用率。资源性能是通过虚拟化技术实现的,这些技术可以在不同的虚拟机之间共享资源提供者的基础架构。这项研究提出了一种基于学习自动机的新算法,可以提高资源利用率并减少能耗。所提出的算法考虑了用户需求资源的变化以预测PM,这可能会导致过载。由于可以防止服务器过载,因此该算法提高了PM的利用率,减少了迁移次数,并关闭了空闲服务器,从而降低了数据中心的能耗。该算法在CloudSim模拟器中进行了仿真。真实的PlanetLab云基础架构系统的10天处理器信息用于工作量数据。在能耗和关闭PM数量方面,将所提出算法的性能与DVFS,NPA和阈值算法等现有算法进行了比较。仿真结果表明,该算法在能耗,SLA违反方面分别优于其他算法,分别为175.48 Kwh,0.00326。 突出显示 提出了优化能耗的Power和SLA有效资源分配算法消耗,VM迁移数和违反SLA的行为。 使用学习自动机来适应环境参数。 利用学习自动机来防止违反服务水平协议和物理机器过载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号