首页> 外文期刊>Journal of Parallel and Distributed Computing >A decentralized gossip based approach for data clustering in peer-to-peer networks
【24h】

A decentralized gossip based approach for data clustering in peer-to-peer networks

机译:对等网络中基于分散式八卦的数据聚类方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel distributed approach, named GDSOM-P2P, for clustering distributed data resources is proposed by combining, an improved version of Silhouette algorithm, the dynamic Self-Organizing Map (SOM) neural network, and VICINITY protocol as a generic overlay management framework based on self organization. The proposed GDSOM-P2P is adapted to the dynamic conditions of these networks. In the proposed GDSOM-P2P algorithm, at first, each node extracts a number of important data through the SOM and Silhouette algorithms. Then each of the nodes chooses one of its neighbors with the help of the VICINITY algorithm, and exchanges their important data with their neighbors. By doing this, over a period, the nodes' data will be distributed over the entire network and the nodes in the network access the summary data model of the whole data. Finally, each node aggregates its internal data with a summary model and then performs the final clustering to cluster its internal data correctly. Evaluation results over a real P2P environment verify the efficiency of proposed GDSOM-P2P. Furthermore, the proposed GDSOM-P2P is also compared with the existing well-established distributed data clustering techniques. The results show a significant accuracy improvement of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
机译:本文提出了一种新颖的分布式方法,即GDSOM-P2P,它通过结合改进版的Silhouette算法,动态自组织映射(SOM)神经网络和VICINITY协议作为通用叠加层,来对分布式数据资源进行聚类。基于自组织的管理框架。提出的GDSOM-P2P适用于这些网络的动态条件。在提出的GDSOM-P2P算法中,首先,每个节点都通过SOM和Silhouette算法提取大量重要数据。然后,每个节点在VICINITY算法的帮助下选择其邻居之一,并与邻居交换重要数据。这样,在一段时间内,节点的数据将分布在整个网络中,并且网络中的节点将访问整个数据的摘要数据模型。最后,每个节点使用摘要模型聚合其内部数据,然后执行最终的聚类以正确聚类其内部数据。在真实的P2P环境中的评估结果验证了所提出的GDSOM-P2P的效率。此外,还将提议的GDSOM-P2P与现有的完善的分布式数据聚类技术进行比较。结果表明,该方法具有显着的精度提高。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号