首页> 外文期刊>Journal of Parallel and Distributed Computing >A malicious threat detection model for cloud assisted internet of things (CoT) based industrial control system (ICS) networks using deep belief network
【24h】

A malicious threat detection model for cloud assisted internet of things (CoT) based industrial control system (ICS) networks using deep belief network

机译:基于深度信任网络的基于云辅助物联网(CoT)的工业控制系统(ICS)网络的恶意威胁检测模型

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) devices are extensively used in modern industries combined with the conventional industrial control system (ICS) network through the industrial cloud to make the production data easily available to the corporate business management and easier control for highly profitable production systems. The different devices within the conventional ICS network originally manufactured to run on an isolated network and was not considered for the privacy and security of the control and production/architecture data being trafficked over the manufacturing plant to the corporate. Due to their extensive integration with the industrial cloud network over the internet, these ICS networks are exposed to a significant threat of malicious activities created by malicious software. Protecting ICS from such attacks requires continuous update of their database of anti-malware tools which requires efforts from manual experts on a regular basis. This limits real time protection of ICS.Earlier work by Huda et al. (2017) based on a semi-supervised approach performed well. However training process of the semi-supervised-approach (Huda et al., 2017) is complex procedure which requires a hybridization of feature selection, unsupervised clustering and supervised training techniques. Therefore, it could be time consuming for ICS network for real time protection. In this paper, we propose an adaptive threat detection model for industrial cloud of things (CoT) based on deep learning. Deep learning has been used in many domain of pattern recognition and a popular approach for its simple training procedure. Most importantly, deep learning can learn the hidden patterns of the domain in an unsupervised manner which can avoid the requirements of huge expensive labeled data. We used this particular characteristic of deep learning to design our detection model.Two different types of deep learning based detection models are proposed in this work. The first model uses a disjoint training and testing data for a deep belief network (DBN) and corresponding artificial neural network (ANN). In the second proposed detection model, DBN is trained using new unlabeled data to provide DBN with additional knowledge about the changes in the malicious attack patterns. Novelty of the proposed detection models is that the models are adaptive where training procedures is simpler than earlier work (Huda et al, 2017) and can adapt new malware behaviors from already available and cheap unlabeled data at the same time. This will avoid expensive manual labeling of new attacks and corresponding time complexity making it feasible for ICS networks. Performances of standard DBNs are sensitive to its configurations and values for the hyper-parameters including number of hidden nodes, learning rate and number epochs. Therefore proposed detection models find an optimal configuration by varying the structure of DBNs and other parameters. The proposed detection models are extensively tested on a real malware test bed. Experimental results show that the proposed approaches achieve higher accuracies than standard detection algorithms and obtain similar performances with earlier semi supervised work (Huda et al., 2017) but provide a comparatively simplified training model. (C) 2018 Elsevier Inc. All rights reserved.
机译:物联网(IoT)设备广泛用于现代工业中,并通过工业云与常规工业控制系统(ICS)网络结合使用,从而使生产数据易于提供给公司业务管理,并更易于控制高利润的生产系统。常规ICS网络中的不同设备最初制造为在隔离的网络上运行,因此并未考虑通过制造工厂传输给公司的控制和生产/架构数据的私密性和安全性。由于它们与Internet上的工业云网络广泛集成,因此这些ICS网络面临着由恶意软件创建的恶意活动的重大威胁。要保护ICS免受此类攻击,需要不断更新其反恶意软件工具数据库,而这需要定期由手动专家进行努力。这限制了ICS的实时保护。Huda等人的早期工作。 (2017年)基于半监督方法表现良好。但是,半监督方法的训练过程(Huda等人,2017)是一个复杂的过程,需要特征选择,无监督聚类和监督训练技术的混合。因此,ICS网络进行实时保护可能很耗时。本文提出了一种基于深度学习的工业物联网(CoT)自适应威胁检测模型。深度学习已在模式识别的许多领域中使用,并且因其简单的训练过程而成为一种流行的方法。最重要的是,深度学习可以无监督的方式学习域的隐藏模式,从而避免了庞大而昂贵的标记数据的需求。我们利用深度学习的这一特殊特征来设计我们的检测模型。这项工作提出了两种不同类型的基于深度学习的检测模型。第一个模型对深度信念网络(DBN)和相应的人工神经网络(ANN)使用不相交的训练和测试数据。在第二个建议的检测模型中,使用新的未标记数据对DBN进行了训练,以为DBN提供有关恶意攻击模式变化的其他知识。所提出的检测模型的新颖之处在于,该模型是自适应的,其中训练程序比早期工作更简单(Huda等,2017),并且可以同时从已经可用和廉价的未标记数据中适应新的恶意软件行为。这将避免对新攻击进行昂贵的手动标记以及相应的时间复杂性,从而使其对于ICS网络变得可行。标准DBN的性能对其超参数的配置和值敏感,包括隐藏节点的数量,学习率和时期。因此,建议的检测模型通过改变DBN的结构和其他参数来找到最佳配置。提议的检测模型已在真实的恶意软件测试床上进行了广泛测试。实验结果表明,与早期的半监督工作相比,所提出的方法具有比标准检测算法更高的准确性并获得相似的性能(Huda等人,2017),但提供了一个相对简化的训练模型。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号