首页> 外文期刊>Journal of Parallel and Distributed Computing >On multiprocessor task scheduling using efficient state space search approaches
【24h】

On multiprocessor task scheduling using efficient state space search approaches

机译:使用高效的状态空间搜索方法进行多处理器任务调度

获取原文
获取原文并翻译 | 示例

摘要

Obtaining an optimal schedule for a set of precedence-constrained tasks is a well-known NP-complete problem in its general form. In view of the intractability of the problem, most of the previous work relies on heuristics that try to find reasonably high quality solutions in an acceptable amount of time. While optimal polynomial-time algorithms are known only for a few simple cases (and in other cases can only be obtained through an exhaustive search with prohibitively high time complexity), they may be critically important for applications in which performance is the prime objective. Optimal solutions can also serve as a reference to test the performance of various heuristics. Moreover, an optimal schedule for a program at hand needs to be determined only once (and off-line) but the program using that schedule is in general executed several times. In this paper, we propose optimal algorithms for static scheduling of task graphs with arbitrary parameters to multiple homogeneous processors. The first algorithm is based on the A~* search technique and uses a computationally efficient cost function for guiding the search with reduced complexity. Additionally, we propose a number of effective state-pruning techniques to reduce the search space. For further lowering the complexity, we propose an efficient parallelization of the search algorithm. We parallelize the algorithm with reduced interprocessor communication as well as with static and dynamic load-balancing schemes to evenly distribute the search states to the processors. We also propose an approximate algorithm that guarantees a bounded deviation from the optimal solution but executes in a considerably shorter time. Based on an extensive experimental evaluation of the algorithms, we conclude that the parallel algorithm with pruning techniques is an efficient scheme for generating optimal solutions of reasonably large problems while the approximate algorithm is effective if slightly degraded solutions are acceptable.
机译:对于一组优先级受限的任务而言,获得最佳调度是一般形式的众所周知的NP完全问题。考虑到问题的棘手性,以前的大多数工作都依赖于试探法,这些试探法试图在可接受的时间内找到合理高质量的解决方案。尽管最佳多项式时间算法仅在少数几种简单情况下才是已知的(在其他情况下只能通过详尽的搜索来获得时间复杂度极高的结果),但对于以性能为主要目标的应用而言,它们可能至关重要。最佳解决方案还可作为测试各种启发式方法性能的参考。此外,对于手头程序的最佳时间表仅需要确定一次(和离线),但是使用该时间表的程序通常要执行几次。在本文中,我们提出了一种最优算法,用于将具有任意参数的任务图静态调度到多个同类处理器。第一种算法基于A〜*搜索技术,并使用计算效率高的代价函数来以降低的复杂度指导搜索。此外,我们提出了许多有效的状态修剪技术以减少搜索空间。为了进一步降低复杂度,我们提出了搜索算法的高效并行化。我们将算法与减少的处理器间通信以及静态和动态的负载平衡方案并行化,以将搜索状态平均分配给处理器。我们还提出了一种近似算法,该算法可保证与最优解有一定限度的偏差,但执行时间要短得多。基于对算法的广泛实验评估,我们得出的结论是,采用修剪技术的并行算法是一种生成合理的大问题的最优解的有效方案,而如果稍微退化的解是可接受的,则近似算法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号