首页> 外文期刊>Journal of Parallel and Distributed Computing >A pipelined-loop-compatible architecture and algorithm to reduce variable-length sets of floating-point data on a reconfigurable computer
【24h】

A pipelined-loop-compatible architecture and algorithm to reduce variable-length sets of floating-point data on a reconfigurable computer

机译:一种流水线循环兼容的体系结构和算法,可减少可重配置计算机上可变长度的浮点数据集

获取原文
获取原文并翻译 | 示例

摘要

Reconfigurable computers (RCs) combine general-purpose processors (GPPs) with field programmable gate arrays (FPGAs). The FPGAs are reconfigured at run time to become application-specific processors that collaborate with the GPPs to execute the application. High-level language (HLL) to hardware description language (HDL) compilers allow the FPGA-based kernels to be generated using HLL-based programming rather than HDL-based hardware design. Unfortunately, the loops needed for floating-point reduction operations often cannot be pipelined by these HLL-HDL compilers. This capability gap prevents the development of a number of important FPGA-based kernels. This article describes a novel architecture and algorithm that allow the use of an HLL-HDL environment to implement high-performance FPGA-based kernels that reduce multiple, variable-length sets of floating-point data. A sparse matrix iterative solver is used to demonstrate the effectiveness of the reduction kernel. The FPGA-augmented version running on a contemporary RC is up to 2.4 times faster than the software-only version of the same solver running on the GPP. Conservative estimates show the solver will run up to 6.3 times faster than software on a next-generation RC.
机译:可重构计算机(RC)将通用处理器(GPP)与现场可编程门阵列(FPGA)结合在一起。在运行时将FPGA重新配置为与GPP协作以执行应用程序的专用处理器。从高级语言(HLL)到硬件描述语言(HDL)编译器,可以使用基于HLL的编程而不是基于HDL的硬件设计来生成基于FPGA的内核。不幸的是,这些HLL-HDL编译器通常无法流水线进行浮点归约操作所需的循环。这种能力差距阻碍了许多重要的基于FPGA的内核的开发。本文介绍了一种新颖的架构和算法,该架构和算法允许使用HLL-HDL环境来实现基于FPGA的高性能内核,从而减少了多个可变长度的浮点数据集。稀疏矩阵迭代求解器用于证明归约核的有效性。在现代RC上运行的FPGA增强版比在GPP上运行的同一求解器的纯软件版本快2.4倍。保守的估计表明,求解器的运行速度比下一代RC上的软件快6.3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号