首页> 外文期刊>Journal of Parallel and Distributed Computing >Parallel techniques for information extraction from hyperspectral imagery using heterogeneous networks of workstations
【24h】

Parallel techniques for information extraction from hyperspectral imagery using heterogeneous networks of workstations

机译:使用工作站的异构网络从高光谱图像中提取信息的并行技术

获取原文

摘要

Recent advances in space and computer technologies are revolutionizing the way remotely sensed data is collected, managed and interpreted. In particular, NASA is continuously gathering very high-dimensional imagery data from the surface of the Earth with hyperspectral sensors such as the Jet Propulsion Laboratory's airborne visible-infrared imaging spectrometer (AVIRIS) or the Hyperion imager aboard Earth Observing-1 (EO-1) satellite platform. The development of efficient techniques for extracting scientific understanding from the massive amount of collected data is critical for space-based Earth science and planetary exploration. In particular, many hyperspectral imaging applications demand real time or near real-time performance. Examples include homeland security/defense, environmental modeling and assessment, wild-land fire tracking, biological threat detection, and monitoring of oil spills and other types of chemical contamination. Only a few parallel processing strategies for hyperspectral imagery are currently available, and most of them assume homogeneity in the underlying computing platform. In turn, heterogeneous networks of workstations (NOWs) have rapidly become a very promising computing solution which is expected to play a major role in the design of high-performance systems for many on-going and planned remote sensing missions. In order to address the need for cost-effective parallel solutions in this fast growing and emerging research area, this paper develops several highly innovative parallel algorithms for unsupervised information extraction and mining from hyperspectral image data sets, which have been specifically designed to be run in heterogeneous NOWs. The considered approaches fall into three highly representative categories: clustering, classification and spectral mixture analysis. Analytical and experimental results are presented in the context of realistic applications (based on hyperspectral data sets from the AVIRIS data repository) using several homogeneous and heterogeneous parallel computing facilities available at NASA's Goddard Space Flight Center and the University of Maryland.
机译:太空和计算机技术的最新进展正在彻底改变遥感数据的收集,管理和解释方式。特别是,美国航空航天局(NASA)不断使用高光谱传感器(例如喷气推进实验室的机载可见红外成像光谱仪(AVIRIS)或地球观测1号(EO-1)上的Hyperion成像仪)从地球表面收集超高维图像数据。 )卫星平台。开发有效技术以从大量收集的数据中提取科学理解对于空基地球科学和行星探索至关重要。特别是,许多高光谱成像应用需要实时或接近实时的性能。例如,国土安全/防御,环境建模和评估,荒地火灾追踪,生物威胁检测以及漏油和其他类型化学污染的监控。当前只有少数几种用于高光谱图像的并行处理策略可用,并且大多数策略在基础计算平台中都具有同质性。反过来,工作站(NOW)的异构网络已迅速成为非常有前途的计算解决方案,有望在许多正在进行的和计划中的遥感任务的高性能系统的设计中发挥重要作用。为了满足在这个快速发展和新兴的研究领域中对具有成本效益的并行解决方案的需求,本文针对从高光谱图像数据集中无监督的信息提取和挖掘开发了几种高度创新的并行算法,这些算法专门设计用于在异构NOW。所考虑的方法分为三个非常有代表性的类别:聚类,分类和光谱混合分析。分析和实验结果是在实际应用(基于AVIRIS数据存储库中的高光谱数据集)的背景下使用在NASA的戈达德太空飞行中心和马里兰大学提供的几种同质和异构并行计算设施呈现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号