首页> 外文期刊>Journal of Parallel and Distributed Computing >Optimizing Server Placement For Parallel I/o In Switch-based Clusters
【24h】

Optimizing Server Placement For Parallel I/o In Switch-based Clusters

机译:在基于交换机的群集中为并行I / o优化服务器放置

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider how to optimize I/O server placement in order to improve parallel I/O performance in switch-based clusters. The significant advances in cluster networks in recent years have made it practical to connect tens of thousands of hosts via networks that have enormous and scalable total capacity, and in which communications between a host and any other host incur the same cost. The same cost property frees users from consideration of network contention and allows them to concentrate on load-balancing issues. We formulate the server placement problem on a cluster that has the same cost property as a weighted bipartite matching with the goal of balancing the workload on the I/O nodes. To find an optimal solution to this problem, we propose an O(n~(3/2)m(log n + log m)) algorithm, called Load Balance Matching (LBM), where n is the number of compute nodes and m is the number of I/O servers.rnWe also investigate server placement for general clusters in which multiple same-cost subclusters are interconnected to form a large cluster. This class of clusters typically adopt irregular topologies that allow the construction of scalable systems with an incremental expansion capability. Also, due to the limited bandwidth on network links between subclusters, network link contention is a major concern when distributing servers over the entire network. We show that finding an optimal placement strategy for general clusters with the goal of minimizing link contention is computationally intractable. To resolve this problem, we propose a hierarchical strategy that places servers in two steps. First, to minimize link contention, we decide which subcluster each server should be assigned to. We propose a tree-based heuristic algorithm, called Load Balance Traversing (LBT), to solve this problem. In the second step, the LBM algorithm decides the location of each server within a subcluster. Our simulation results demonstrate that LBT achieves a significant improvement in parallel I/O performance over four other algorithms, and is near-optimal in some cases.
机译:在本文中,我们考虑如何优化I / O服务器的位置,以提高基于交换机的群集中的并行I / O性能。近年来,群集网络的显着进步使通过具有巨大且可扩展的总容量的网络连接成千上万的主机变得可行,并且其中主机与任何其他主机之间的通信产生相同的成本。相同的成本属性使用户无需考虑网络争用,并使他们能够专注于负载平衡问题。我们在具有与加权二分匹配相同的成本属性的群集上制定服务器放置问题,目的是平衡I / O节点上的工作负载。为了找到此问题的最佳解决方案,我们提出了一种O(n〜(3/2)m(log n + log m))算法,称为负载平衡匹配(LBM),其中n是计算节点的数量,m是I / O服务器的数量。我们还研究了通用集群的服务器布置,在该集群中,多个相同成本的子集群相互连接以形成一个大型集群。此类群集通常采用不规则拓扑,以允许构建具有增量扩展功能的可伸缩系统。另外,由于子群集之间网络链接的带宽有限,因此在整个网络上分发服务器时,网络链接争用是一个主要问题。我们表明,为使​​群集之间的链接争用最小化而寻找一种通用集群的最佳放置策略在计算上是棘手的。为了解决此问题,我们提出了一种将服​​务器分两步放置的分层策略。首先,为了最大程度地减少链接争用,我们确定每个服务器应分配给哪个子集群。我们提出了一种基于树的启发式算法,称为负载平衡遍历(LBT),以解决此问题。在第二步中,LBM算法确定子群集中每个服务器的位置。我们的仿真结果表明,与其他四种算法相比,LBT在并行I / O性能方面取得了显着提高,并且在某些情况下接近最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号