首页> 外文期刊>Journal of Optimization Theory and Applications >On Optimization over the Efficient Set in Linear Multicriteria Programming
【24h】

On Optimization over the Efficient Set in Linear Multicriteria Programming

机译:线性多准则规划中有效集的优化

获取原文
获取原文并翻译 | 示例

摘要

The efficient set of a linear multicriteria programming problem can be represented by a reverse convex constraint of the form g(z)≤0, where g is a concave function. Consequently, the problem of optimizing some real function over the efficient set belongs to an important problem class of global optimization called reverse convex programming. Since the concave function used in the literature is only defined on some set containing the feasible set of the underlying multicriteria programming problem, most global optimization techniques for handling this kind of reverse convex constraint cannot be applied. The main purpose of our article is to present a method for overcoming this disadvantage. We construct a concave function which is finitely defined on the whole space and can be considered as an extension of the existing function. Different forms of the linear multicriteria programming problem are discussed, including the minimum maximal flow problem as an example.
机译:线性多准则规划问题的有效集合可以由形式为g(z)≤0的反凸约束表示,其中g是凹函数。因此,在有效集上优化某些实函数的问题属于称为逆凸规划的全局优化的重要问题类别。由于文献中使用的凹函数仅在包含潜在多准则编程问题的可行集合的某个集合上定义,因此无法应用大多数全局优化技术来处理这种反向凸约束。本文的主要目的是提出一种克服这一缺点的方法。我们构造了一个凹函数,该凹函数在整个空间上是有限定义的,可以看作是现有函数的扩展。讨论了线性多准则规划问题的不同形式,包括最小最大流量问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号