首页> 外文期刊>Journal of Optimization Theory and Applications >Minimum Norm Solution to the Absolute Value Equation in the Convex Case
【24h】

Minimum Norm Solution to the Absolute Value Equation in the Convex Case

机译:凸情况下绝对值方程的最小范数解

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we give an algorithm to compute the minimum norm solution to the absolute value equation (AVE) in a special case. We show that this solution can be obtained from theorems of the alternative and a useful characterization of solution sets of convex quadratic programs. By using an exterior penalty method, this problem can be reduced to an unconstrained minimization problem with once differentiable convex objective function. Also, we propose a quasi-Newton method for solving unconstrained optimization problem. Computational results show that convergence to high accuracy often occurs in just a few iterations.
机译:在本文中,我们给出了一种在特殊情况下计算绝对值方程(AVE)的最小范数解的算法。我们表明可以从替代定理和凸二次程序的解集的有用刻画中获得该解。通过使用外部惩罚方法,该问题可以简化为具有一次可微凸目标函数的无约束最小化问题。此外,我们提出了一种拟牛顿法来解决无约束优化问题。计算结果表明,仅需几次迭代就可以实现向高精度的收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号