首页> 外文期刊>Journal of numerical mathematics >Convergence analysis and error estimates for mixed finite element method on distorted meshes
【24h】

Convergence analysis and error estimates for mixed finite element method on distorted meshes

机译:变形网格上混合有限元方法的收敛性分析和误差估计

获取原文
获取原文并翻译 | 示例

摘要

In [2] we introduced a new type of mixed finite element approximations for two- and three-dimensional problems on distorted polygonal and polyhedral meshes that consist of cells having different forms. Additional degrees of freedom that arise in the process are excluded by a special condition that is natural for the mixed finite element approximations considered. This paper is devoted to the error analysis of the respective finite element solutions. We show that under certain assumptions on the regularity of the exact solution the convergence rate for the new approximations is the same as for the Raviart-Thomas finite element approximations of the lowest order.
机译:在[2]中,我们针对变形的多边形和多面体网格上的二维和三维问题引入了一种新型的混合有限元逼近,该网格由具有不同形式的单元组成。该过程中产生的其他自由度被考虑为混合有限元逼近的特殊条件所排除。本文致力于各个有限元解决方案的误差分析。我们表明,在精确解的正则性的某些假设下,新近似值的收敛速度与最低阶的Raviart-Thomas有限元近似值相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号